Wetland salinity induces carry-over effects in the physical conditions of a long-distance migrant

Salinization is having a major impact on wetlands and its biota worldwide. Specifically, many migratory animals that rely on wetlands are increasingly exposed to elevated salinity on their nonbreeding grounds. Experimental evidence suggests that physiological challenges associated with increasing salinity may disrupt self-maintenance processes in these species. Nonetheless, the potential role of salinity as a driver of ecological carry-over effects remains unstudied. This study investigated...

Lifelong effects of trapping experience

Long-term monitoring of individually marked animals is usually required for reliable estimation of numerous life history parameters. However, capture, marking and manipulation can dramatically alter the animals' behaviour after capture, and thus affect subsequent recapture success. Here, a pied flycatcher population was used as an example to illustrate the sampling bias resulting from the repeated capture of free-ranging individuals.

Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations

Adaptive plasticity is essential for many species to cope with environmental heterogeneity. In particular, developmental plasticity allows organisms with complex life cycles to adaptively adjust the timing of ontogenetic switch points. In this study, the physiological mechanisms underlying divergent degrees of developmental plasticity across Rana temporaria island populations inhabiting different types of pools in northern Sweden is investigated.

Reducing light-induced mortality of seabirds: High pressure sodium lights decrease the fatal attraction of shearwaters

The use of artificial light at night and its ecological consequences are increasing around the world. Light pollution can lead to massive mortality episodes for nocturnally active petrels, one of the most threatened avian groups. Some fledglings can be attracted or disoriented by artificial light on their first flights. Studies testing the effect of artificial light characteristics on attractiveness to seabirds have not provided conclusive results and there is some urgency as some endangered...

Complex plumage patterns can be produced only with the contribution of melanins

Birds exhibit an extraordinary diversity of plumage pigmentation patterns. It has been overlooked, however, that complex patterns can be produced only with the contribution of melanins because these are the only pigments under direct cellular control. This hypothesis was tested for the first time examining the plumage patterning of all species of extant birds. 32 % of species show complex plumage patterns, the vast majority (98 %) including the contribution of colors produced by melanins.