Understanding resident and migratory bird populations responses to climate warming

Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical...

An adaptive method for identifying marine areas of high conservation priority

Identifying priority areas for biodiversity conservation is particularly challenging in the marine environment due to the open and dynamic nature of the ocean, the paucity of information on species distribution, and the necessary balance between marine biodiversity conservation and essential supporting services such as seafood provision. Here, the Patagonian seabird breeding community was used as a case study to propose an integrated and adaptive method for delimiting key marine areas for...

Cities may save some threatened species but not their ecological functions

Urbanization is one of the main causes of biodiversity loss worldwide. Wildlife responses to urbanization, however, are greatly variable and, paradoxically, some threatened species may achieve much larger populations in urban than in natural habitats. Urban conservation hotspots may therefore help some species avoid regional or even global extinctions, but not conserve their often overlooked ecological functions in the wild. This issue is being addressed in this study by using two species of...

Current knowledge on the physiological and molecular effects of Queen pheromones in ants

Ant queen pheromones (QPs) have long been known to affect colony functioning. In many species, QPs affect important reproductive functions such as diploid larvae sexualization and egg-laying by workers, unmated queens (gynes), or other queens. Until the 1990s, these effects were generally viewed to be the result of queen manipulation through the use of coercive or dishonest signals.

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration

Animal colouration is characterized by the concentration of pigments in integumentary structures and by the nanoscale arrangement of constitutive elements. However, the influence of molecular vibration on colour expression has been overlooked in biology. Molecular vibration occurs in the infrared spectral region, but vibrational and electronic properties can influence each other. Thus, the vibration of pigment molecules may also affect their absorption properties and the resulting colours....