Destacados Destacados

La Fundación Jaime González-Gordon ofrece cuatro becas para el desarrollo de Trabajos de Fin de Máster sobre Doñana

 

Los estudios se realizarán en colaboración y bajo el aval científico de la Estación Biológica de Doñana

La convocatoria está abierta hasta el 31 de enero

 

Un año más, la Fundación Jaime González-Gordon convoca cuatro becas para el desarrollo de proyectos de Investigación sobre el Parque Nacional de Doñana y su entorno dentro de un programa de Máster universitario. Esta convocatoria se desarrollará en colaboración y bajo el aval científico de la Estación Biológica de Doñana, instituto de investigación perteneciente al Consejo Superior de Investigaciones Científicas (CSIC).

Destinatarios

Estudiantes de programas de máster universitarios oficiales en universidades españolas o extranjeras durante el curso académico 2023-2024.

Temática

Abierto a todas las ramas de conocimiento. Los trabajos de máster deberán centrarse en el entorno de Doñana (no necesariamente el espacio protegido) pero no hay ninguna limitación en relación al campo temático (biología, antropología, historia, geología, arte …).

Dotación

• La beca consiste en una dotación de 1500€ que se transferirán al estudiante para su utilización en apoyo al desarrollo del proyecto.

• Si el proyecto implica trabajo de campo en Doñana, el beneficiario tendrá acceso a las instalaciones de la Institución Científico Técnica Singular ICTS-Doñana (http://icts.ebd.csic.es/en/web/icts-ebd/home ), incluyendo alojamiento.

• Si el proyecto implica la utilización de los laboratorios y servicios de la Estación Biológica de Doñana (http://www.ebd.csic.es/inici ), los servicios se cobrarían a coste reducido, como personal de la EBD-CSIC.

Para proyectos que impliquen trabajo en la ICTS-Doñana o en la EBD-CSIC, la persona beneficiaria deberá tener un tutor o un co-tutor de la Estación Biológica que se encargará de las solicitudes de acceso y del contacto con las responsables del espacio protegido.

Solicitud

Los candidatos deberán presentar la siguiente documentación (en castellano):

• Certificado académico oficial de las notas obtenidas durante el grado o la licenciatura.

• Curriculum vitae

• Carta de motivación

• Propuesta de proyecto. Longitud máxima: 2 páginas.

• Evidencia de estar matriculado o en proceso de inscripción en un programa de máster durante el

curso 2021-2022.

• Carta de apoyo firmada por el tutor si lo hubiese. En caso de no tener tutor y que la propuesta fuese seleccionada, y en los casos en los que el trabajo precise acceso a la ICTS-Doñana o a la EBD-CSIC y el tutor no fuese miembro de la EBD-CSIC, la Estación Biológica haría propuesta de posibles tutores o co-tutores.

Toda esta documentación se mandará por correo electrónico a la Fundación Jaime González Gordon (direccion@fundacionjaimegonzalezgordon.es) con copia a la Oficina de Coordinación de la Investigación de la EBD-CSIC (coordinacion@ebd.csic.es) no más tarde del 31 de enero de 2024.

Evaluación de solicitudes

Las propuestas se valorarán en el plazo de dos semanas desde la fecha límite de presentación. Para la evaluación se tendrá en cuenta el interés del proyecto y su calidad científica, la relevancia para Doñana, la capacidad aparente del candidato para llevar a cabo el proyecto. La comisión de selección podrá entrevistar a los candidatos durante el proceso de evaluación si así lo considera conveniente.

La valoración de los candidatos se hará de forma consensuada entre representantes de la Fundación y de la EBD-CSIC. La decisión será inapelable.

La resolución se comunicará a los candidatos por correo electrónico.

Compromiso de las personas beneficiarias

-Mandar copia del Trabajo Fin de Máster resultante del proyecto a la Fundación y a la EBD-CSIC, indicando la fecha de la defensa pública.

-Preparar un vídeo de 2-3 minutos de duración o un texto divulgativo presentando los resultados del trabajo. Estos materiales serán accesibles a través de las páginas web de la Fundación y/o de la EBD-CSIC.

-La persona beneficiaria se compromete a agradecer el apoyo de la Fundación en cualquier artículo  científico o comunicación en congreso que pudiese derivar del proyecto y mandará copia del trabajo publicado a la Fundación.

 



Otros destacados Otros destacados

Atrás

Coevolución y la Red de la Vida

Coevolución y la Red de la Vida

La era de Internet nos ha demostrado el poder de las redes de información. Internet y sus usuarios forman redes, así como redes de transporte, aeropuertos y aviones, comunicaciones dentro y entre ciudades; y nuestro cuerpo depende para funcionar de redes de conexiones entre neuronas del cerebro, entre diferentes procesos metabólicos, etc. Los millones de especies de la Tierra también forman redes de interacciones, tal que ninguna de ellas puede sobrevivir sin relacionarse con otras: depredadores y presas, parásitos y hospedadores, plantas y micorrizas, mutualistas, relaciones de competencia, etc. Se trata de redes. Uno de los principales objetivos de los ecólogos y biólogos evolutivos es comprender cómo se forman las redes de especies, cómo cambian sus participantes a lo largo del tiempo y cómo afectan a la evolución. Cuando las especies interactúan entre sí, a menudo no sólo evolucionan, sino que coevolucionan. La selección natural favorece a los depredadores que son mejores en capturar presas, y favorece a las presas que tienen mejores defensas para escapar de los depredadores. Favorece a los individuos que compiten mejor contra otras especies. Y, entre las especies mutualistas, la selección natural favorece, por ejemplo, las plantas que mejor atraen a los insectos polinizadores y los insectos que visitan flores que son más eficientes para extraer su polen y néctar. Intentar catalogar y describir el patrón completo de conexiones en estas redes complejas es una tarea desalentadora. Aquí se ha intentado comprender cómo las especies coevolucionan dentro de grandes redes de especies mutualistas. Los autores comenzaron compilando 75 redes de especies interactuantes que ellos mismos y otros investigadores habían descrito anteriormente para una amplia gama de ambientes terrestres y marinos. Estas redes incluían, por ejemplo, plantas y polinizadores, plantas y aves y mamíferos que comían frutos y dispersaban semillas, anémonas y peces de anémona en arrecifes de coral, y plantas que son defendidas por hormigas. Cada red tiene, en un extremo, especies que interactúan con una sola especie y, en el otro extremo, especies que interactúan con muchas otras especies. Cuando se dibuja como una red, cada especie es un nodo y cada interacción entre especies es una línea entre dos nodos. Por lo tanto, cada línea es una interacción directa entre dos especies. Utilizando estas redes como punto de partida, los autores desarrollaron un modelo matemático que les permitió explorar por primera vez cómo la coevolución podría dar forma a los rasgos de las especies que forman parte de redes complejas de muchas especies que interactúan. El problema a resolver, sin embargo, no es cómo los rasgos de las especies se forman por coevolución directa entre parejas de especies. Más bien, el problema central es cómo la coevolución da forma a especies que interactúan directa e indirectamente con múltiples especies. Si dos especies interactúan y coevolucionan entre sí, entonces su coevolución, por otra parte, podría afectar indirectamente la evolución futura de otras especies dentro de la red. Los autores estudiaron los efectos relativos de la coevolución directa e indirecta sobre la evolución de rasgos dentro de redes de diferentes tipos de interacciones ecológicas. Sus análisis sugieren dos resultados contraintuitivos. Primero, cuanto mayor es la importancia de la selección coevolutiva entre las especies que interaccionan, mayor es la importancia de los efectos indirectos en la evolución general a través de la red. En segundo lugar, en los mutualismos que implican múltiples especies interactuantes, las especies más especializadas -las especies con menos interacciones directas- están más influidas por efectos indirectos que por sus interacciones directas. Estos dos resultados, junto a otros, tienen muchas implicaciones para nuestra comprensión de la evolución y coevolución en redes complejas de especies que interaccionan. Entre las más importantes, hay dos conclusiones que vinculan la evolución, la coevolución y la tasa de cambio ambiental. Con un cambio ambiental lento, los efectos indirectos de las especies en la evolución de otras especies pueden ayudar a las interacciones mutualistas a persistir durante largos períodos de tiempo. En contraste, un cambio ambiental rápido puede ralentizar la tasa global de evolución impulsada por las interacciones directas en estas grandes redes, haciendo a cada especie más vulnerable a la extinción. Con un cambio ambiental rápido las condiciones ambientales pueden cambiar más rápido que la adaptación de las especies a ese cambio en el seno de grandes redes mutualistas. El problema de los efectos directos e indirectos dentro de las redes no es, por supuesto, exclusivo de la biología. Cómo estudiar los efectos indirectos en las redes ha preocupado a los científicos en física, ingeniería, informática y en otras disciplinas. El marco de modelización desarrollado por los autores es aplicable a muchos tipos de redes. A partir de lo que pueden parecer como simples descripciones de quién-interacciona-con-quién, este estudio nos da una visión de cómo la evolución y coevolución pueden dar forma a la fascinante complejidad de la red de la vida. informacion[at]ebd.csic.es: Guimarães et al (2017) Indirect effects drive coevolution in mutualistic networks. Nature doi:10.1038/nature24273


http://www.nature.com/nature/journal/vaop/ncurrent/full/nature24273.html