Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley

Paul N. Williams,¹ Antia Villada,¹ Claire Deacon,² Andrea Raab,¹ Jordi Figuerola,³ Andrew J. Green,⁵ Jörg Feldmann,¹ and Andrew A. Meharg*¹

School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, U.K., Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UU, U.K., and Estación Biológica de Doñana, Sevilla 41013, Spain

Paired grain, shoot, and soil of 173 individual sample sets of commercially farmed temperate rice, wheat, and barley were surveyed to investigate variation in the assimilation and translocation of arsenic (As). Rice samples were obtained from the Camargue (France), Doñana (Spain), Cadiz (Spain), California, and Arkansas. Wheat and barley were collected from Cornwall and Devon (England) and the east coast of Scotland. Transfer of As from soil to grain was an order of magnitude greater in rice than for wheat and barley, despite lower rates of shoot-to-grain assimilation and export not just in rice but also in all the major grain crops. In this study As levels for soil, shoot, and grain of temperate rice, wheat, and barley were obtained so that grain As levels could be reviewed in regard to both soil and shoot As levels. This study can be differentiated from other surveys because it is the transfer of As from the rhizosphere soil through the plant to the grain that is explored—not just total grain levels.

In anaerobic paddy soil systems As is more mobile than in aerobic wheat soils; thereby suggesting separate soil As threshold criteria for the different crops. This survey explores the validity of this by comparing rice and wheat collected in the field and also in pot experiments spiked with As.

Methodology

Crop and Soil Survey. Paired grain, shoot, and soil samples from commercially farmed temperate crop fields were surveyed at harvest, with one sample set per field sampled. Rice samples were obtained from the Camargue (France), Doñana (Spain), Cadiz (Spain), California, and Arkansas. Wheat and barley were collected from Cornwall and Devon (England) and the east coast of Scotland. Each field/sample was formed from the bulking of triplicate grain panicle, shoot, and soil (0–10 cm depth/10–20 g) subsamples, with triplicate samples taken at 0.5 m spacings. Regions were selected under the premise of suspected variability in agricultural soil As levels (1, 11, 12). In each case the soil directly under the sampled plant was sampled.

For comparison, high As exposure greenhouse pot experiments were conducted for rice and wheat plants to observe shoot–grain As relationships under controlled growing conditions on uniform soil spiked with As for known cultivars. The results were then applied to predict/model shoot and grain As accumulation for serious contamination scenarios.

Pot Experiment. Experimental information for rice are detailed in Abedin et al. (7). Seeds for two wheat varieties were germinated and then transferred to 1 L free-draining pots containing clay rich subsoil, as used and characterized in the experiments of Abedin et al. (7). The soils were either

food followed by drinking water is the greatest source of inorganic As intake for the U.S. population. Rice is the primary source of As exposure in a nonseafood diet, typically possessing higher inorganic As levels than seafood (3). The range reported in rice grain As levels varies from less than 0.01 to 2.05 μg g⁻¹ (4). For typical Asian American diets, As exposure from rice even at inorganic As levels of 0.10 μg inorganic As g⁻¹ exceeds ingestion of 1 L of 10 μg L⁻¹, the volume and As concentration on which current U.S. regulations are set (1). In a study of inorganic As exposure, surveying predominantly elderly white caucasian males in the midwestern U.S. (typically not a high rice consumer group), food was found to be a significant As exposure route, explaining 37% of total variance (5). Arsenic exposure from food is even more important for those reliant on rice subsistence diets, where dietary As exposure from rice alone can be considerable (4).

Recent studies have shown that in rice there is large varietal variation in the As sequestered in root surface iron plaque and in As uptake and shoot As transport (4, 6–8), leading to the possibility of breeding cultivars with low grain As levels. In wheat Liu et al. (9) showed large differences in seed germination upon exposure to AsIII and AsV, while Geng et al. (10) showed cultivar differences in growth resulting from As exposure. There is a clear impetus for furthering the understanding of soil—root, root—shoot, and shoot–grain assimilation and export not just in rice but also in all the major grain crops. In this study As levels for soil, shoot, and grain of temperate rice, wheat, and barley were obtained so that grain As levels could be reviewed in regard to both soil and shoot As levels. This study can be differentiated from other surveys because it is the transfer of As from the rhizosphere soil through the plant to the grain that is explored—not just total grain levels.

Published on Web 09/05/2007
untreated or had monosodium arsenate added to a concentration of 10, 25, and 50 \(\mu g \) As \(g^{-1} \) soil dry weight. The plants were then grown in a temperate green house (average temperature 25 °C) with sodium lighting providing a supplement of 150 \(\mu m \)ol \(m^{-2} s^{-1} \) photosynthetically active radiation (PAR) until plants had set seed (3 months). Three wheat plants, one per pot, of each variety replicated each treatment. After seed set, seeds and shoots were harvested.

Chemicals. Aristar grade reagents were used exclusively throughout the analysis. Nitric acid was obtained from VWR International. The 1000 \(mg/L \) standards As and In were obtained from Merck.

Statistics. General linear modeling (GLM) and the Mann Whitney test were conducted using Minitab v.14 (State College, PA). Data used in the GLM were ranked prior to analyses to normalize distribution.

Sample Preparation. *Plant: Rice, Wheat, and Barley Shoot and Grain.* All material was washed with deionized water to remove soil, air-dried at room temperature, then powdered, and oven dried at 90 °C for 48 h. In the case of rice and barley, any husks (glumellae) were removed. None of the grain was polished; therefore, all bran layers were maintained prior to milling. Approximately 0.200 g d. wt of milled grain and 0.100 g d. wt of milled shoot was weighed out into 50 mL polypropylene digest tubes, and 2 mL of concentrated nitric acid was added. The mixture was left to imibe overnight. Samples were digested in a microwave oven (CEM Mars 5, CEM Corp., Matthews, NC). The temperature was gently raised, first to 15 °C (and held for 10 min) and then to 75 °C (and held for 10 min). Finally the digest was taken up to 95 °C and maintained for 30 min. Samples were cooled to room temperature, 0.500 g of 100 \(\mu g \) In \(L^{-1} \) was added, and then the sample was diluted to a mass of 50,000 \(g \) with ultrapure deionized water (18.2 M\(\Omega \)) obtained from a Milli-Q system (Millipore).

Soil. Soils were oven dried at 90 °C for 48 h, then sieved (mesh size = 2 mm). Subsamples of 0.200 g d. wt were then dispensed into quartz glass tubes and blended with 2 mL of concentrated nitric acid. The mixture was allowed to predigest at room temperature for 12 h, before the addition of hydrogen peroxide (2 mL). Digests were then raised to 140 °C on a heating block, for 6 h. Once at room temperature the solutions were diluted with ultrapure deionized water, first to a volume of 10 mL, from which a 1 mL aliquot was mixed with 0.1 mL of 1000 \(\mu g \) In \(L^{-1} \) and taken to a volume of 10 mL.

NIST certified reference material (CRM) 1568a Arkansas long grain rice flour and NCS ZC73007 and GBW 07405 soil CRMs were used to validate the analyses. Quality controls of CRMs, spikes, and blanks were run with each plant or soil digest batch of ~40 samples—which were determined randomly using Microsoft Excel 2000.

Total Element Detection. An Agilent 7500c (Agilent Technologies, Tokyo, Japan) ICP-MS with a Meinhard nebulizer was used to measure the elements Ti (\(ml/z 49 \)), As (\(ml/z 75 \)), Se (\(ml/z 77, 78, 82 \)), and In (\(ml/z 115 \)). The following \(ml/z 77, 78, 82 \) were measured in order to identify polyatomic Ar\(^{40}Cl^{15} \) interferences on \(ml/z 75 \). Corrections for interference from Ar\(^{40}Cl^{15} \) were not found to be necessary. Samples were randomized prior to analysis. Standards were run after every set of 40 samples. Every tenth sample was digested and analyzed in duplicate (Tables S1–3; all Tables and Figures with an “S” prefix can be found in the Supporting Information.). All sample vials were cleaned then soaked in 10% v/v nitric acid for a minimum of 12 h, then washed with deionized water, and air-dried prior to use. Concentrations were determined using five-point calibrations (Table S4) calculated from a multiplet element standard.

Mean As recovery from the rice CRM was 104 ± 1% (\(n = 26 \)). The mean recoveries for the soil CRMs were 84 ± 1% (\(n = 9 \)) and 82 ± 1% (\(n = 3 \)), respectively, for NCS ZC73007 and GBW 07405. Plant spike recoveries for 5 \(\mu g \) \(L^{-1} \) were 89 ± 2% (\(n = 15 \)) and for 10 \(\mu g \) \(L^{-1} 93 ± 3% \) (\(n = 13 \)). Soil spike recoveries for 5 \(\mu g \) \(L^{-1} \) were 91 ± 1% (\(n = 5 \)) and for 50 \(\mu g \) \(L^{-1} 87 ± 2% \) (\(n = 7 \)). The presented data has not been corrected for these recoveries. Further quality control data can be found in Table S5.

Results

Summary of As in Grain, Shoot, and Soil. *Grain.* Carmargue (France) rice grain was found to be the most elevated in As. Mean and median grain As levels (\(n = 22 \)) were 0.32 \(\mu g \) \(g^{-1} \) d. wt and 0.34 \(\mu g \) \(g^{-1} \) d. wt, respectively, and the maximum recorded level, 0.66 \(\mu g \) \(g^{-1} \) d. wt, was the highest found in this survey (Table 1). These levels are comparable to tube-well-irrigated rice grown in Bangladesh’s groundwater-As-affected regions of Chuadanga (mean = 0.32 \(\mu g \) \(g^{-1} \) d. wt, \(n = 27 \)) and Satkhira (0.38 \(\mu g \) \(g^{-1} \) d. wt, \(n = 14 \)) (13). Inorganic As grain levels of 0.28 \(\mu g \) \(g^{-1} \) d. wt have subsequently been observed in market bought Carmargue rice grain (unpublished data).

Mean grain levels for Arkansas rice were 0.20 \(\mu g \) \(g^{-1} \) d. wt, the maximum value observed being 0.43 \(\mu g \) \(g^{-1} \) d. wt. The levels in Californian rice averaged 0.13 \(\mu g \) \(g^{-1} \) d. wt and did not exceed 0.18 \(\mu g \) \(g^{-1} \) d. wt (Table 1). In a related study (1) of 134 U.S. supermarket rice samples, the south central (AR, MI, MO, LA, TX) processed grain exhibited significantly higher levels than those from California.

In 1998 over 45 km² of land (~30 km² farmland), including rice paddies, were affected by As-enriched mine waste, resulting from a breach from a tailings lagoon in Aznalcóllar (southern Spain) that released 5 000 000 m³ of acidified water and soil (11, 14). Rice was collected from impacted Doñana fields and from Cadiz (an unindustrialized area) to provide a comparison. Our data shows that the rice grain from Doñana is not particularly elevated in As, with mean and median grain levels of 0.16 \(\mu g \) \(g^{-1} \) d. wt and 0.15 \(\mu g \) \(g^{-1} \) d. wt, respectively (Table 1). Despite average soil As levels ~4 times lower in As, the grain levels from Cadiz were only fractionally less, with mean and median levels of 0.13 \(\mu g \) \(g^{-1} \) d. wt and 0.14 \(\mu g \) \(g^{-1} \) d. wt, respectively.

Mean wheat and barley grain As levels from Scotland were 0.03 \(\mu g \) \(g^{-1} \) and 0.04 \(\mu g \) \(g^{-1} \) d. wt, respectively (Table 1). Wheat and barley from southwestern England were approximately twice as high with mean levels of 0.07 \(\mu g \) \(g^{-1} \) and 0.08 \(\mu g \) \(g^{-1} \), respectively. Our data is concurrent with a field survey from The Netherlands that found a mean wheat grain level of 0.05 \(\mu g \) \(g^{-1} \) d. wt (assumming 15% water content (15)) for 84 samples and a mean barley grain level for 0.08 \(\mu g \) \(g^{-1} \) d. wt (assuming 15% water content (15)) for 45 samples (15). In the U.S. the average grain levels are reported as 0.02 \(\mu g \) \(g^{-1} \) d. wt (16, 17); however, levels lower than this are not unusual. In U.K. field experimental plots of wheat grain grown under soil compaction and irrigation treatments, mean grain levels of <0.01 \(\mu g \) \(g^{-1} \) in two successive years were recorded (18).

The highest Scottish grain was a wheat sample with a level of 0.21 \(\mu g \) \(g^{-1} \) d. wt (Table 1). In southwestern England both wheat and barley grains were found with levels of ~0.50 \(\mu g \) \(g^{-1} \) d. wt (Table 1). This is higher than the maximum levels found in the Dutch study for wheat and barley at 0.33 \(\mu g \) \(g^{-1} \) d. wt and 0.43 \(\mu g \) \(g^{-1} \) d. wt (assumming 15% water content (15)). However this is still considerably lower than the level of 0.74 \(\mu g \) \(g^{-1} \) d. wt observed by Norra et al. (19), in a southeastern Asia wheat, which is comparable to grain levels of 0.75, 0.71, and 0.69 \(\mu g \) \(g^{-1} \) d. wt found in wheat grown in a greenhouse in 50 \(\mu g \) As \(g^{-1} \) spiked soil (current study).

Shoot. The As level in shoots was highly variable, albeit in general the levels for rice, wheat, and barley were less than 5 \(\mu g \) \(g^{-1} \). A notable exception to this was the Carmargue rice, whose average (mean and median) levels were over twice that of any other area and the maximum recorded
table 1. arsenic distribution in rice, wheat, and barley grain, shoot, and soil by production region

<table>
<thead>
<tr>
<th>crop (genus)</th>
<th>country</th>
<th>region</th>
<th>As level, μg g⁻¹ d. wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>rice (Oryza)</td>
<td>France</td>
<td>Carmargue</td>
<td>grain 0.12–0.61, mean 0.32, median 0.34, n = 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 1.5–20.6, mean 10.2, median 6.8, n = 23</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>Doñana</td>
<td>soil 5–10, mean 8, median 8, n = 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadiz</td>
<td>grain 0.06–0.29, mean 0.16, median 0.15, n = 25</td>
</tr>
<tr>
<td></td>
<td>U.S.A.</td>
<td>California</td>
<td>shoot 0.8–9.6, mean 3.3, median 2.6, n = 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arkansas</td>
<td>soil 4–11, mean 8, median 7, n = 25</td>
</tr>
<tr>
<td></td>
<td>England</td>
<td>Cornwall, Devon</td>
<td>grain 0.07–0.21, mean 0.13, median 0.14, n = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 0.4–3.3, mean 1.4, median 1.2, n = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soil 1–2, mean 2, median 2, n = 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California</td>
<td>grain 0.08–0.18, mean 0.13, median 0.11, n = 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 0.4–1.3, mean 0.7, median 0.7, n = 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arkansas</td>
<td>soil 2–4, mean 3, median 3, n = 9</td>
</tr>
<tr>
<td>wheat (Triticum)</td>
<td>Scotland</td>
<td>East Coast</td>
<td>grain 0.08–0.43, mean 0.20, median 0.18, n = 6</td>
</tr>
<tr>
<td></td>
<td>England</td>
<td>Cornwall, Devon</td>
<td>shoot 0.7–3.4, mean 1.5, median 1.3, n = 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soil 4–7, mean 6, median 6, n = 6</td>
</tr>
<tr>
<td>barley (Hordeum)</td>
<td>Scotland</td>
<td>East Coast</td>
<td>grain 0.01–0.21, mean 0.03, median 0.02, n = 29</td>
</tr>
<tr>
<td></td>
<td>England</td>
<td>Cornwall, Devon</td>
<td>shoot 0.0–2.1, mean 0.2, median 0.1, n = 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soil 3–18, mean 7, median 6, n = 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadiz</td>
<td>grain 0.01–0.50, mean 0.07, median 0.04, n = 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 0.1–1.6, mean 0.3, median 0.2, n = 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arkansas</td>
<td>soil 6–201, mean 33, median 21, n = 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>grain 0.03–0.05, mean 0.04, median 0.04, n = 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 0.1–0.2, mean 0.1, median 0.1, n = 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soil 6–10, mean 7, median 7, n = 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadiz</td>
<td>grain 0.01–0.54, mean 0.08, median 0.03, n = 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>shoot 0.1–1.8, mean 0.4, median 0.2, n = 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arkansas</td>
<td>soil 6–546, mean 57, median 25, n = 29</td>
</tr>
</tbody>
</table>

sample was 20.6 μg g⁻¹ d. wt. It has been demonstrated that rice has a considerable capacity for assimilating As within the shoot. In a pot experiment by Abedin et al. (7), continual irrigation of rice with As-contaminated water resulted in shoot levels in excess of 100 μg g⁻¹ d. wt. Tsutsumi (20) observed shoot levels of 149 μg g⁻¹ in rice shoot grown in 312 μg g⁻¹ soils.

In this survey, wheat and barley shoot mean and median values were below 1 μg As g⁻¹ d. wt in agreement with previous levels found in cereals and straw of U.K. livestock feedstuffs (21). However, for 5% of the samples, levels of over 1 μg g⁻¹ were recorded, with the highest being 2.1 μg As g⁻¹ d. wt.

The ability of As to accumulate in wheat and barley has already been shown. Greenhouse pot experiments of wheat grown in 50 μg As g⁻¹ d. wt spiked soil resulted in shoot levels of ~3 μg g⁻¹ d. wt (Table S6), while levels of over 30 μg g⁻¹ d. wt were found in barley shoot grown in soils amended to 250 μg As g⁻¹ d. wt (22). Similarly, for wheat and barley grown in As-amended soil (range 53.8–709 μg g⁻¹), contaminated by the Aznalcóllar mine spill, levels of ~20 μg g⁻¹ d. wt were detected in the shoots (14).

To establish if grain and shoot As were a consequence of surface contamination by soil (i.e., incorporation of soil particles in the analyses of grain and shoot) or direct plant uptake, Ti levels were monitored. Ti, being a nonessential trace element in crops, is found at very low relative levels in plants compared to soil. Regressions for grain and shoot Ti against grain and shoot As were found to be nonsignificant (shoot: R² = 0.0009; slope = −0.0400; p = 0.6295) (grain: R² = 0.0095; slope = −0.0855; p = 0.1277), indicating the unlikelihood of surface contamination (Figure S1.).

Soil. The counties of Devon and Cornwall in southwestern England have soils naturally elevated in As due to As mineralization surrounding the granitic intrusions, with As levels further elevated, considerably in places, by millennia of base and precious mining and smelting, including specifically an As extraction and processing industry (12). Total As in over half the soils in this survey from southwestern England were above normal baseline levels. Out of 66 samples, 53% recorded levels over the guideline values set in the U.K. for residential and allotment soils of 20 μg As g⁻¹ d. wt (23). In Canada, regulatory limits of As contamination in agricultural soils are 25 μg g⁻¹ d. wt (24). Samples in excess of guideline values do not necessarily indicate a direct health risk but act as a trigger where further investigation is required; in some cases, remediation or changes in land use must be implemented (25). In the case of 5% of the samples, highly elevated levels over 100 μg g⁻¹ were detected, with the maximum level being 546 μg g⁻¹ (Table 1). Similarly, high levels have been observed in other studies such as a field trial on a farm in Cornwall, formally an As smelter, and the total soil level was found to be 748 μg g⁻¹ d. wt (26).

Conversely the average As levels from French, Spanish, and U.S. paddy soils and the Scottish wheat and barley soils were below 10 μg g⁻¹ (Table 1). Despite the high shoot and grain As levels found in Carmargue rice, the total soil concentration was comparably low (5–10 μg As g⁻¹ d. wt). Cadiz and California had the lowest median soil levels of 2 μg g⁻¹ d. wt and 3 μg g⁻¹ d. wt, respectively (Table 1).

Discussion

Arsenic Transfer from Soil to Shoot and Grain. Some regional differences existed in average As shoot/soil transfer factors (Sshoot/Ssoil TFs). The proportional transfer of As from soil to wheat and barley in Cornwall and Devon was lower than that of Scotland, indicating reduced bioavailability. For rice, regional median Sshoot/Ssoil TFs were more variable. The transfer of As from soil to shoot followed the order Carmargue > Cadiz > Doñana > California > Arkansas (Table S7). The range of Sshoot/Ssoil TFs was considerable (Tables S7 and S8). Minimum and maximum Sshoot/Ssoil TFs for rice were 0.05–3.4; for wheat, 0.002–0.142; and for barley, 0.002–0.095. There was good agreement between mean and median Sshoot/Ssoil TFs for wheat (mean = 0.018; median = 0.013) and barley (mean = 0.011; median = 0.010) (Tables S7 and S8, Figure S2.). In rice the median Sshoot/Ssoil TFs were nearly 50 times...
higher than in the wheat or barley. This is shown in Figure 1(d–f). A similar trend was observed in As grain/soil transfer (Grain/Soil TF) (Figure S2) with rice having higher median values 13 and 20 times greater than median values for wheat and barley, respectively (Tables S7 and S8, Figure S2). Figure 1a–c shows this in a graphical context. There was little variation in regional Grain/Soil TFs for rice, wheat, or barley. This highlights the importance of ascertaining shoot As levels when considering the relationship between soil and grain.

The fate of As in soil is governed by key physiochemical properties (e.g., pH, Eh, organic carbon, texture, Fe/Al/Mn oxides, and S, P, and As concentration) (27–29), factors that can differ markedly between soil types (25), growth seasons, and land use (18). Song et al. (25) found a 49-fold difference in the EC10 (As dose causing 10% inhibition) in barley root elongation assays of 16 European soils. Zhu et al. (30) found considerable differences in the inorganic phosphate transporters of wheat cultivars to discriminate against AsV. Yet despite the widespread variation associated from the collection of soils from distinct geogenic origins and from plants of differing parentage, regressions of log grain As versus log soil As levels were highly significant ($p < 0.001$). R^2 values for rice, wheat, and barley were 0.17, 0.41, and 0.38, respectively (Table S11). Modeling soil As transfer into plants was greatly improved by regressing log shoot As versus log soil As levels, and each was still highly significant ($p < 0.001$), explaining 31%, 43%, and 52% of the variation for rice, wheat, and barley, respectively (Table S11).

Arsenic valency determines bioavailability (29), with AsIII mobility being greater than AsV, because of desorption from Fe (hydro)oxides (27). In the anaerobic or anoxic bulk soil environment of a rice paddy, AsIII predominates (27, 29). In soils favorable for wheat and barley cultivation, oxygen availability is high creating aerobic or (sub)oxic conditions, where AsV prevails. Generic As soil thresholds based on total As levels are therefore superfluous if As sorption—desorption equilibria are not taken into consideration. Flooded soils with a total As level of 10 μg g$^{-1}$ can result in rice with highly elevated grain being produced (Table 1). In contrast, soil As thresholds set for rice would be unnecessary and uneconomical in the context of aerobic crop systems.

Differences between inter- and intraspecies specific variation in soil solution transfer of As across root plasma membranes is also of importance. Comparisons of root As transporter efficiency (based on the V_{max} (maximum transport velocity)/K_m (Michaelis constant)) of As uptake reveals that rice As uptake is more efficient than in wheat (Figure S13) (8, 9). In addition, the efficiency of AsIII and AsV are similar in wheat while there is disparity between the species in uptake in rice roots, with the efficiency of AsV transport being 2–3 times higher than AsIII (Figure S13) (8, 9). In a recent experiment by Raab et al. (31), there was ~2 fold increase in root As(V) concentration between As tolerant and As susceptible rice cultivars when exposed to a solution of 1 mg L$^{-1}$ AsV for 24 h.

Arsenic Transfer from Shoot to Grain. Table S9 and Figure 2 shows that there is good agreement in the shoot-to-grain transfer of As from field-collected and high As-spiked pot experiment samples for rice and wheat. Comparison of the regression gradients (Table S9) of field and pot rice are
Median grain/shoot transfer factors (Grain/Shoot TFs) were close, 0.38 and 0.36, respectively. A slight variation existed between field and pot regression gradients for wheat; however, both were consistently higher than those calculated for rice, indicating a greater shoot-to-grain export of As. Median grain/shoot transfer factors (Grain/Shoot TFs) were comparable between pot experiment and field-collected samples (Figure S3).

Large variation exists in the shoot export of As to the grain. This is illustrated by minimum and maximum grain/shoot transfer factors (Grain/Shoot TF) of 0.02–0.36 in rice, 0.017–4.335 in wheat, and 0.01–1.59 in barley (Tables S7 and S8). However, median Grain/Shoot TF values for field rice were 2.29 mg g⁻¹ d. wt., Grain/Shoot TFs were halved when urea was included with the manure. In an As-irrigated pot experiment growing rice, by Islam et al. (33), Grain/Shoot TFs were halved as shoot As levels increased from 2.29 mg g⁻¹ d. wt. Nitrogen levels in the shoot additionally increased, with rises in shoot As levels concurring with Williams et al. (4). Differences in Grain/Shoot TFs were not as apparent in wheat and barley, although in general higher shoot As levels were consistent with low Grain/Shoot TFs.

Graphical analysis of combined field and pot experiment data for rice (Figure 3) suggests that the concentration dependency of shoot-to-grain transfer is modeled by an exponential decay curve with an inflection point at shoot levels of between 2–5 mg g⁻¹ d. wt. Fitting of a regression exponential decay model to the 96 samples and using shoot As level to predict subsequent grain As accounted for 63% of total variation (Figure S4). Down regulation of the shoot–grain export of As at higher shoot levels could explain why regressions of grain and soil As are often poor (34). A linear model best predicted wheat grain levels (R² = 0.76) (Figure S5), indicating no suppression of shoot–grain transfer at the shoot As levels detected in this survey.

The nature of any physiological trigger controlling shoot–grain As transfer is speculative. Lipid peroxidation and other tissue damage caused by reactive oxygen stress induced by As levels in the shoot could be important. Geng et al. (35) show clear varietal differences in the ability of rice to cope with physiological stress resulting from As exposure. P-deprivation increases the toxicity of As in rice (35). Nutritional dynamics within the plant may also determine shoot–grain export of As. Increases in shoot N levels appear concurrent with lower Grain/Shoot TFs (4, 32, 33). This link should be further explored. Sequestration of As in shoot tissue is unclear, and further understanding of the labile pool of As that is available for grain export is yet to be established. Additionally, speciation must also be considered. Raab et al. (31) have...
shown that in general methylated species are rapidly moved from the roots into shoot tissue; therefore given the differences in relative toxicity between organic and inorganic As, calculating species specific \(\text{GeO}^{+}_{\text{m}}/\text{S}_{\text{m}}^{+} \) TFs would be of value in the screening of cultivars that produce grain with a low inorganic As content.

Acknowledgments

The research is funded by the Biotechnology and Biological Sciences Research Council (BBSRC), Swindon (U.K.).

Supporting Information Available

All Tables and Figures with an “S” prefix can be found in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org

Literature Cited

(23) Department for environment, food and rural affairs, 2002: SGVI: Soil guidelines values for arsenic contamination.

(24) Arnt, J.; Rudnitski, K.; Schmidt, B.; Speelman, L.; Nobouphasavan, S. 1997 Environmental risk assessment of spraying landfill leachate on the Guelph Turfgrass Institute (GTI) site: Focus on Pb and As and Earth and Atmosphere Field Camp; 87-411; University of Guelph, Guelph, ON.

(30) Zhu, Y.-G.; Geng, Chun-nu; Tong, Yi-Ping; Smith, S. E.; Smith, F. A. Phosphate (Pi) and Arsenate uptake by two wheat (Triticum aestivum L.) cultivars and their double haploid lines. Ann Bot. – London 2006, 98, 631–636.

Received for review March 13, 2007. Revised manuscript received June 17, 2007. Accepted July 24, 2007.