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Abstract. This paper presents a semi-automatic methodology for � re scars map-
ping from a long time series of remote sensing data. Approximately, a hundred
MSS images from di� erent Landsat satellites were employed over an area of
32 100 km2 in the north-east of the Iberian Peninsula. The analysed period was
from 1975 to 1993. Results are a map series of � re history and frequencies.
Omission errors are 23% for burned areas greater than 200 ha while commission
errors are 8% for areas greater than 50 ha. Subsequent work based on the resultant
� re scars will also help in describing � re regime and in monitoring post-� re
regeneration dynamics.

1. Introduction
In Mediterranean ecosystems � res burn yearly around 0.6Mha (Vélez 1996). From

1968 to 1994, the number of summer forest � res in coastal eastern Spain have increased
at a rate of 21 forest � res per year (Piñol et al. 1998). Despite the variability in total
surface burned per year in Spain, there is a spectacular increase when comparing the
50 kha burned yearly in the early 60s with the 450 kha reached in 1995 (Moreno et al.

1998). On the other hand, � re directly in� uences the structure and spatial distribution
of vegetation (Nieuwenhuis 1987, Callaway and Davis 1993, Davis and Burrows 1994,
Johnston and Gutsell 1994, Gracia and Sabaté 1996) but, in turn, vegetation structure
may also in� uence the frequency and size of � res (Minnich 1983) .

Satellite images have been used for mapping burned areas, aiding to understand
the structure and dynamics of the landscape, particularly at the regional level.
Furthermore, mapping � re scars and characterising � re regimes is also of interest to
global studies, such as those aimed to quantify carbon exchanges with the atmosphere
(Kasischke et al. 1993, Chuvieco and Martin 1994, Veroustraete et al. 1996, Pereira
and Setzer 1996, etc.).

Remote sensing has been applied to characterise � re regimes in forested areas
(Minnich 1983, Richards 1984). Speci� cally, various methods have been developed to
detect changes produced by � re by means of remote sensing techniques. For instance,
principal component analysis (PCA) may separate factors of variability in di� erent
images (i.e. principal components) (Fung and Le Drew 1987, Chavez and Kwarteng
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1989, Eastman and Fulk 1993, Collins and Woodcock 1996). Thus, factors included
in � rst components are usually related to the general spatial variability and to large
phenological changes, while local changes, such as � res, are shown in the subsequent
components (Richards 1984, Salvador and Pons 1996). Despite its interest, PCA
application to � re studies has been restricted to time series comprising few images.

Methodologies based on classi� cation procedures have been also applied to
analyze vegetation changes (Hall et al. 1991, Foody et al. 1996). However, as Pereira
and Setzler (1993) realised, mapping of burned areas by classi� cation algorithms
may lead to very di� erent results depending on the speci� c parameters used.

Image subtraction is a simple method frequently used in studies of vegetation
disturbances. It is based on the subtraction of two images from di� erent dates and
on the later selection of burned areas by a threshold value of change. However,
choosing the threshold value is not usually easy since the range of output values
from the subtraction process is continuous, and pixels that have undergone change
are not clearly distinguished from those that have not (Chuvieco 1996). Some
examples of this methodology can be found in studies of rainforest deforestation
(Sader 1995, Di Maio and Seltzer 1997) and its use in the location of burned zones
has been quite widespread (Kasischke et al. 1993, Kasischke and French 1995,
Fernández et al. 1997). A re� nement of the subtraction method is based on the
calculation of a regression line between pixels of images preceding and following
a � re. Pixels within the � re perimeter are usually distinctly separated from the
regression line given by invariant pixels (Chuvieco 1996, Fernández et al. 1997 ).

Finally, change vector analysis (Lambin and Strahler 1994a, 1994b and Lambin
1996) and Fourier transformations (Ludovic et al. 1994) are other methods applied
to detect vegetation changes on image series. Nevertheless, both require a high and
regular frequency of images and the latter is more suitable for cyclical changes.

From all sensor bands and indices, NDVI is the most commonly used in studies
of detection of burned areas. It takes advantage of the radiometric information of
vegetation given by red and near infrared bands, minimising the e� ect of di� erent
solar angles, relief e� ects and allowing comparisons between images of di� erent times
of the year (Mather 1987); and moreover, it may be also obtained from almost all
earth observation sensors. In addition, there are speci� c properties that make NDVI
suitable for detection of � re scars. For instance, its general response to levels of green
biomass irrespective of plant species present (Blackburn and Milton 1995, Gamon
et al. 1995) makes it an useful tool to quantify the total vegetation cover (Anderson
et al. 1993, Duncan et al. 1993). Although its response becomes saturated when
vegetation achieves a 100% coverage (Danson and Plummer 1995, Steininger 1996)
it is specially sensitive in lower coverage.

On the other hand, several drawbacks usually driven by changes in soil properties
have been described for the NDVI (Huete 1988, Qi et al. 1993, 1994, Xia 1994,
Bannari et al. 1996) and other more complex indices have been proposed. However,
the NDVI is still widely used for regional scale studies since detailed soil information
required for these new indices is not usually available in such scales or it may be
highly variable through time (soil moisture is a clear example).

2. Objectives
The main objective of this study is the development of a semiautomatic methodo-

logy to discriminate burned sites from a long time series of satellite images covering
a relatively large area from a medium/high resolution sensor.
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Speci� cally, the work aimed to map the scars produced by � res during the
1975–1993 period in the study area and to test these maps using ancillary � eld
information. This study is part of a broader study of � re e� ects on the vegetation
dynamics in several parts of Europe (EC Lucifer Project).

3. Material and methods
3.1. Study area

The study region includes the region of Catalonia, with an area of around
32 100 km2 and located in the north-east of the Iberian Peninsula, beside the
Mediterranean Sea (� gure 1). Approximately 60% of it is covered by vegetation
(mainly shrubland and forests) but a dense human settlement has often lead to a
considerable fragmentation of vegetation patches. Although there are some highly
mountainous areas (1500–3000 m) with a cold winter climate, the majority of the
study area has a Mediterranean climate, with a fair weather and a signi� cant summer
drought that frequently leads to forest � res (Terradas and Piñol 1996).

According to the � rst ecological and forest inventory of Catalonia (Gracia et al.
1997), the current wooded forest surface can be characterised by a 20% of Pinus
sylvestris, a 20% of Pinus halepensis, a 16.6% of Quercus ilex, a 12.5% of Pinus
nigra, a 5.5% of Quercus suber, a 4.8% of Pinus uncinata, and 4.0% of Quercus
humilis, and a 3.3% of Pinus pinea; species as Abies alba, Castanea sativa, Fagus

Figure 1. Location of the study area in the European context.
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sylvatica, Pinus pinaster and Quercus cerrioides occupy between 1% and 3% of the
surface. Evergreen species (31 species) reach the 86% of the total forested area (from
which 73% of the area is occupied by conifers), while deciduous trees (58 species)
cover the 14%.

According to the Corine land cover map, shrublands cover 26.6% of the total
wildland area (1 950 326 ha), with a diverse speci� c composition, mainly evergreen
(Folch 1987).

The land cover categories considered in this study are the following ones:

1. The totality of the class 3 (forests and semi natural areas), unless the Corine
subclasses 3.3.1: Beaches, dunes, sand; 3.3.2: Bare rocks; and 3.3.5: Glacier and
permanent snow � elds.

2. Within the class 2 (agricultural areas), uniquely the subclass 2.4.3: Land
principally occupied by agriculture, with signi� cant areas of natural vegetation.

3.2. Satellite images
Fragmentation of vegetation and high population restricts the average size of

� res. Burned sites in the study area are considerably smaller than those of less-
inhabited zones, such as the boreal forest where � res may burn continuously for
several weeks. In that case, huge areas become burned and their mapping can be
achieved by NOAA–AVHRR images (Kasischke et al. 1993, Kasischke and French
1995). Nevertheless, although the AVHRR sensor has also been used to monitor
large � res in the Mediterranean basin (Chuvieco and MartÌ́ n 1994, Fernández et al.
1997) it is not suitable to carry out detailed mapping of medium � res. On the other
hand, although subpixel analysis may be used to quantify the general extent of
burned areas (Raza� mpanilo et al. 1995), it will fail to give � re boundaries.

Finally, the MSS sensor was selected among sensors with a higher spatial reso-
lution as it provided the longest time series of images. More than a hundred MSS
full frames taken on board of Landsat satellites 1, 2, 4 and 5 were acquired from the
1975–1993 period. However, since the study area is quite wide, 2–3 full frames were
needed to cover it, resulting in a mean time series of about 40 images.

3.3. Image corrections
Images had to be geometrically corrected and properly registered in order to be

used in a time series. The correction model of Palà and Pons (1995), based on
polynomials and a digital elevation model, was applied to a group of control points
over the whole set of images to obtain ortho-images. Although some problems
appeared during the geometric correction (particularly in the oldest images where
even full rows were sometimes lacking) these were � nally solved. Pixels of corrected
images had 60 m width, to preserve at maximum the best MSS spatial resolution.

Standard gain and o� set coe� cients for each satellite and period were initially
applied (EOSAT 1986) in order to transform digital numbers to radiance levels.
Next, the radiometric correction model of Pons and Solé-Sugrañes (1994) was applied
to obtain re� ectance values, which may allow comparisons between images from
di� erent times of the year. However, signi� cant di� erences were even found between
contiguous (within the same date and track) re� ectance images. Finally, we realised
that, in addition to the treatments usually applied to MSS images (Mather 1987),
those processed in Europe had been individually stretched taking the speci� c histo-
gram of each image into account (i.e. varying according to its own proportion of



A semi-automatic methodology to detect � re scars using MSS time series 659

clouds and other variable surfaces) (ESA 1979a, 1979b) . Eventually we opted to
combine the previously used radiometric correction model (but taking into account
such stretching) and a � nal normalisation of the di� erent bands by means of invariant
training areas (one corrected image of the Landsat 5 MSS was taken as the reference
image for the standardisation) . Once all images were normalised, NDVI values were
calculated from bands 2 and 4 of the MSS sensor—referred to as 5 and 7 for some
satellites.

3.4. Choice of methodology
Considering the good results of a previous study, in the same area, where � re

scars were successfully discriminated from other surfaces by means of a PCA
(Salvador and Pons 1996), the same methodology was initially applied to the whole
time series. Nevertheless, probably due to the huge amount of images involved, the
PCA failed to group all � res in few image components (� res appeared in almost all
principal components) .

On the other hand, although MSS images were theoretically available every 18
days (16 days in Landsat 4 and 5), images almost completely free of clouds were
much less abundant. Therefore, the dates of the images acquired were not regularly
spread through time, suggesting that methodologies such as the change vector
analysis did not seem suitable.

Finally, the subtraction of images was chosen for its simplicity and because of
its robustness; moreover, this method has been frequently used in studies with similar
objectives (Kasischke et al. 1993, Kasischke and French 1995, Fernández et al. 1997,
Cohen et al. 1998), but using shorter series and in some cases without radiometric
correction of the images. Speci� cally, a sudden decrease in NDVI values between
images before and after the � re was expected. Less predictable, however, could be
the evolution of NDVI values of � re scars in the series of images following the � re
(Salvador and Pons 1996). In this previous study, the evolution of NDVI after the
� re was highly variable, sometimes increasing quickly, or slowly, or even remaining
stable. Therefore, the signi� cant decrease in NDVI values between pre-� re and
post-� re images appeared as the clearest sign to detect burned areas.

3.5. Use of masks
As it might be expected, there were other types of surfaces that yield a sudden

drop in NDVI values between subsequent images. Among them, crops, clouds,
freshwaters and deciduous forests, were present in our study area. To avoid confusions
between these surfaces and burned areas a set of masks was created and applied to
the series of images.

Hence, a mask with all crops was obtained from the Corine-Land Cover Map.
Deciduous forests, which were not usually a� ected by � res, were discriminated by
means of a pair of winter-summer images in which their phenology was specially
conspicuous. Clouds appeared as dark spots in the NDVI images and had high
re� ectance values in the original bands, which were used to create masks for every
NDVI image (speci� cally, band 2 (0.6–0.7 mm) was used). However, masks failed to
detect cloud edges since their re� ectance values were much lower than those found
in cloud cores. Cloud edges were � nally included in masks by spatially expanding
the pixels of original cloud masks. A further problem appeared in images with large
areas covered with clouds since, although clouds could be successfully detected by
masks, the probability of rejecting one area with a hidden � re scar (under the clouds)
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was considerable. This problem was minimised through the division of full frames
in sub-windows (see below in §3.6). Finally, freshwaters where also easily controlled
by means of a reclassi� cation of the Corine-Land Cover map.

A number of factors were relevant when considering the minimum area to be
taken into account in this study. Besides the minimum sizes given by the pixel
resolution and by co-registration problems, slightly bigger sizes may still lead to the
appearance of an unmanageable number of small patches coming from local events
such as new buildings, agriculture management, new roads and infrastructures (see
Kasischke et al. 1993). After some visual trials we set the minimum area of change
at 30 ha.

3.6. Detection thresholds
Threshold determination may be carried out in three di� erent ways. Firstly,

values may be � xed on a theoretical basis. This option requires a high level of
reliability in radiometric corrections, and su� cient correspondence between theoret-
ical conditions and those truly found in the image. Such conditions were not satis� ed
in our study due to some radiometric processing problems existing in such a long
time series.

The second possibility was to use a statistical approach, considering pixels located
more than a particular number of standard deviations (usually 2 Ö s) from the mean
value of the subtraction image (expected near 0) (Fung and Le Drew 1988, Fernández
et al. 1997). This method is based on the probability of extracting from a normal
population, an individual outside the interval given by m Ô Y Ö s (where m is the
population mean and Y is a value, usually 1, 2 or 3). However, a complete satellite
image cannot be considered as a sample but rather as a complete census, where
every individual (pixel ), including those more extreme, is measured. Thus, a system-
atic error would be committed using this method because we would always reject
5% (or the equivalent proportion to Y Ö s) of the most extreme values in the
population, considering them to come from another population (the one of burned
pixels).

Finally, the last considered approach was empirical, visually seeking the threshold
value that yielded best results (Kasischke et al. 1993). This was the selected one, but
using a methodology that gave a threshold value for every pair of images (see below).

Preliminary trials showed that the optimal threshold shifted considerably among
the subtraction images. This might be expected, considering the following factors:

1. The type of vegetation burned in� uences NDVI response giving greater
NDVI di� erences for a � re in a forested area than those produced in a
shrub-covered area.

2. Images from di� erent seasons produce di� erent responses. For example, sub-
traction of two summer images may produce quite a di� erent response com-
pared to the one of a subtraction of a spring and a summer image. In the
latter case, the summer image will have low NDVI values due to moisture
stress a� ecting the Mediterranean vegetation. This stress is more evident in
shrubby zones (where the herbaceous understorey dries out) than in densely
forested zones where canopies respond steadily (Gamon et al. 1995 ).

3. Images from di� erent sensors (Landsat MSS 1, 2, 3 and 5) may have di� erent
radiometric responses due to problems in the radiometric correction process.

4. The radiometric correction model employed assumes a horizontally homogen-
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eous atmosphere. This assumption is not entirely valid across a large area
including important height � uctuations, such as the one studied here.

To minimise the e� ect of some of the above-mentioned factors and to provide a
NDVI threshold for every possible situation the total study area was divided
into 31 sub-windows, for which we could assume a similar type of vegetation and
environmental conditions.

The empirical choice of thresholds was based on a visual interpretation of the
images. Speci� cally, a total amount of 21 previously known � res located in di� erent
sub-windows were used to analyse the magnitude of decreases in NDVI values. Thus,
for each one of these burned areas, a range of values concerning NDVI decreases
was obtained, so that within each range the � re scar analysed could be clearly
discriminated. These ranges of possible threshold values (in fact containing potential
thresholds to be used in the discrimination process) were given in relation to the
di� erence in mean NDVI values between the pair of sub-window images which
included each � re (both in a temporal and in a spatial sense) (see � gure 2). Here it
is important to notice that such mean NDVI values were calculated from the totality
of pixels in the subimage (not only from the burned ones). Next, two di� erent
methods, based on simple linear regressions, were applied to obtain the models that
were � nally used to assign speci� c values of thresholds to every pair of sub-window
images along the whole time series (see � gures 3 and 4). (The division in 31 sub-
windows is useful to apply the two methods in a particular way for each
geographic area; moreover, these subwindows conveniently overlap to guarantee
that any signi� cant � re scar is always covered by at least one subwindow.)

Method of the iterated threshold (method 1): Using the centres of threshold
intervals of all 21 � re scars as initial points to be adjusted in a simple regression, an
iterative � tting process was performed towards convergence to a lineal model which
was the closest to all the intervals. Speci� cally, expected values from one � tting were
used as observed values for the next iteration in case they were still found within its

Figure 2. Intervals of NDVI values, given by a maximum and a minimum threshold, within
which the 21 � res analysed were correctly observed. These intervals are given as a
function of the di� erences between the mean NDVI values of the subimages previous
and following to the � re events.
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Figure 3. Method 1 (iterated threshold) for threshold selection. The lineal model � ts the
NDVI intervals shown in � gure 2.

Figure 4. Method 2 (double threshold) for threshold selection. The lineal models � t the
maximum and minimum NDVI values shown in � gure 2.

correspondent interval; otherwise the extreme value of the interval was given as
observed value (see � gure 3).

Method of the seed or double threshold (method 2): This method performs two
simple linear � ttings, one on the maximum values and another one on the minimum
values of the threshold intervals (see � gure 4). The former is used to give less
restrictive thresholds and allows obtaining a best mapping of shapes and perimeters
of the burned area. However, it also considers as burned many other areas that only
respond to high phenological variations. On a second step, to avoid these undesirable
patches, areas burned are detected according to the model � tted to the minimum
values of intervals (the most restrictive) . The resultant � re scars do not often seem
to correctly preserve shapes and perimeters of � res because of the restrictive threshold
applied. However, they can be used as seeds on the model � tted using the maximum
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values to discriminate burned from non-burned areas. Speci� cally, only the areas
and perimeters detected by the less restrictive thresholds that kept some pixels when
the more restrictive thresholds were applied, were considered as valid � re scars (see
� gure 5).

In short, the aim of the two methods, 1 and 2, is to use the best threshold over
the subtraction images, detecting as many � res as possible but avoiding to misinter-
pret decreases of NDVI due to other land cover changes as � res. Figure 5 illustrates
an example on how both methods work.

4. Results
Both methods were applied to each consecutive pair of sub-images derived from

the 31 sub-windows, producing a set of areas characterised by a considerable drop
in NDVI values. Figures 6 and 7 show, in a single map, all the patches detected by
both methods during the period 1975–1993. Both maps are the synthesis of several

dozens of maps of the area over the time and space (satellite frames).
A visual analysis of both maps highlights the most important di� erences between

the results of both methods. Method 1 (iterated threshold) seems to map a signi� c-
antly higher number of patches with a small size. By contrast, method 2 (double
threshold) appears to maintain the continuity of large patches. Table 1 shows the
number of pixels detected as burned by each method according to the recurrence
level of burning. However, although informative, this visual analysis, does not give
an objective assessment of the success of the � re detection. Consequently it was
necessary to access to independent information to quantify the mapping accuracy.
The local Government provided � eld information about the location of � res that
occurred during the period 1983–1993 at the municipality level (i.e. the territory
under municipal jurisdiction). Hence, it was possible to check if each � re scar detected
from the images in a given period of time had been registered by the municipality,
and conversely, if every � re registered by each municipality was detected from the
remotely sensed images.

Figure 8 gives the percentage of the total number of � re scars (patches) detected
by both methods in relation to the wild� res inventoried by the local government
corresponding to the estimation of omission error. Method 1 discriminated 53.36%
of � res greater or equal than 30 ha (175 � res), notably more than the 43.60% of � res
detected by method 2 (143 � res). Visual analysis of � gures 6 and 7 suggests that the
higher error of omission for method 2 is due to the considerably lower number of

small patches discriminated. On the other hand, as it was expected for both methods,
the degree of detection improved as the size of � res increased, reaching 78% for � res
of 200 ha. Nevertheless, the absolute number of � res decreased signi� cantly as the
minimum area increased (see � gure 10).

In addition to the error arising from real � res not being detected, the accuracy
should also be quanti� ed in terms of the error arising from mapped areas which do
not really belong to burned patches (i.e. commission error). Figure 9 shows, for both
methods, the proportions of discriminated areas that did not correspond to real � res.

In this case, unlike the omission error, considering all the � res greater or equal than
30 ha, the accuracy of method 2 (91.08%) was quite superior to that of method 1
(75.73%) since gives a lower number of patches (see � gures 6 and 7). Mapping
accuracy increased with the minimum area considered, as it did for the omission
error, but in this case success levels were generally signi� cantly greater. Most of
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Figure 6. Map of areas burned and frequency of wild� res in Catalonia during the period
1975–93. Method 1.

‘� ctitious’ patches, often of small size, obtained with method 1, corresponded to
sparse shrub communities. This kind of land cover shows a strong phenological
variability due to the herbaceous understorey that dries out during summer time.
This behaviour can produce some reductions in NDVI values similar to that caused
by � res within this kind of vegetation community. Indeed, because of the low cover
percentage the NDVI reduction upon burned areas is not sharp. It is also important
to note that some ‘� cticious’ � re scars correspond, in some cases, to gaps in the
� re statistics, so that the commission error � gures are expected to be somewhat
lower.

In summary, mapping � re scars with a minimum area of 30 ha produced lower
commission errors than omission errors. For both methods, the degree of success
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Figure 7. Map of areas burned and frequency of wild� res in Catalonia during the period
1975-93. Method 2.

Table 1. Number of pixels (60 m Ö 60 m) detected as burned by each method according to
the recurrence level of burning. Figures in parenthesis give the percentage of the burned area.

Recurrence level Double threshold Iterated threshold

Once burned 472 344 (7.50) 470 243 (7.48 )
Twice burned 69 542 (1.10 ) 65 519 (1.04 )
Three times burned 6746 (0.107 ) 6285 (0.100 )
Four times burned 1291 (0.020 ) 1096 (0.017 )
Five times burned 186 (0.0029 ) 203 (0.0032 )
Total burned 550 109 (8.75 ) 543 346 (8.64 )

clearly improved when increasing the minimum area considered as burned. Finally,
when comparing the two methodologies of detection, method 2 yielded lower
omission errors while method 1 produced lower commission errors.
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Figure 8. Percentage of success given as: (number of real � res detected/total number of real
� res) Ö 100 versus minimum area considered. This value is complementary to the
omission error.

Figure 9. Percentage of success given as: (number of real � res detected/total number of � res
detected) Ö 100 versus minimum area considered. This value is complementary to the
commission error.

5. Discussion
Figures 3 and 4 suggest that using a linear model to obtain speci� c thresholds

will not always yield the best estimates, even though it produces considerably better
results than using a single threshold value. However, most of the variation in the
� ttings does not seem to follow a coherent pattern in relation to the independent
variable, possibly suggesting that such variation has a residual origin which can be
attributed to di� erent causes.

First, it was not possible to acquire images recorded on the same period each
year as it would be suitable to get rid of the intraanual phenologic noise (Lambin,
1996). Nevertheless, the models � tted are supposed to have minimised the e� ects of
such phenological � uctuations.
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Figure 10. Absolute number of � res detected by both methods versus the minimum area
considered. Fires equal or bigger than the minimum size given are considered in each interval.

Another more serious consequence of the lack of images arose when there was a
long time period between the � re and the � rst recorded image. In these situations
the drop in NDVI values could be concealed by the appearance of ‘new’ vegetation
in the burned area as a consequence of rains and plant resprouting (it should be
noted that NDVI response becomes rapidly saturated when plant recovery is com-
plete). Thus, if regeneration is e� ective, the � re may be undetectable. This phenom-
enon has been observed in other studies such as those by Kasischke et al. (1993 ),
Masselli et al. (1996) and Pereira and Setzer (1996). This phenomenon will be more
troublesome in areas with sparse vegetation, where initially low percentage of cover
will be easily re-established.

There are several factors that make detection of � res in sparse vegetation di� cult.
First of all, these areas are more phenologically dynamic than perennial forests.
Inclusion of the radiometric response from soils and lithology can also lead to a
variation in the NDVI not attributable to vegetation. In addition, because of their
lower percentage of cover, sparse shrub areas show a smaller reduction of the NDVI
values after � re. It should be emphasised that the models in � gures 3 and 4 do not
directly consider the degree of vegetation coverage that has undergone the � re; such
consideration could lead to future improvements of the presented methodology.

Although images from the same sensor for the multitemporal series from 1975
to 1993 have been employed, substantial changes in the quality of the images could
be expected throughout this period. Drift in the sensor response can be expected as
time goes by after the satellite launch. These changes are not expected to have
signi� cantly a� ected the results because of the � nal normalisation process applied
over the complete set of images (see §3.3).

On the other hand, some inaccuracies in the radiometric correction process,
mainly due to horizontal atmospheric heterogeneity, could be minimised by the use
of sub-windows (see §3.5) during the threshold selection process.

There may be other factors that could lead to some problems when detecting
� re scars with this method. One is the practice, traditional in this region, of forest
cutting. Another one is the variability in the intensity of � re, which is in� uenced by
factors such as meteorological conditions, relief, speci� c composition of vegetation,
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etc. For example there are wild� res that only a� ect the understorey, and which may
not be detected as easy as crown � res. Finally, the validity of tests carried out on
the results of this study should be considered taking into account that governmental
surveys used as ground truth have their own inaccuracies (either in � res counting
or � re extent), making di� cult the precise assessment of the error.

6. Conclusions.
Satellite images have a considerable value for mapping burned areas. Despite

technical problems due to its age, images from the MSS sensor are particularly useful
for the task of � re mapping. Knowledge about these areas can aid to understand
the recovery dynamics of the vegetation communities after � re as shown by DÌ́ az-
Delgado et al. (1998). On the other hand, there is a global and regional interest in
monitoring and describing � re regimes. Such monitoring gives a valuable amount
of information in order to evaluate the most a� ected zones by � re and the possible
implied causes, or even may assist the analysis of carbon � uxes between biosphere
and atmosphere.

The linear models developed in this analysis, although based on a simple method
such as NDVI subtraction, have produced quite acceptable results. When comparing
both methods developed, method 1 initially gave lower omission errors, while method
2 yielded the best results in relation to commission errors. Nevertheless, both methods
are quite conservative , giving clearly lower commission errors than omission errors.
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