Noticias Noticias

Las rutas mundiales de la invasión del cangrejo rojo a partir de su genética

Se han identificado las principales rutas de introducción del cangrejo rojo americano Procambarus clarkii en su proceso de invasión a lo largo y ancho del planeta. Se trata del cangrejo de agua dulce más cosmopolita del mundo y una de las especies con mayor impacto en la estructura y funcionamiento de los ecosistemas acuáticos. Los resultados ayudan a prevenir la expansión de esta especia invasora y a evitar posibles invasiones futuras. La reconstrucción de las principales rutas de invasión del cangrejo rojo se basa en el análisis genético de un gen mitocondrial (COI) de 1.412 cangrejos provenientes de 122 localidades del hemisferio norte. Se describen diversos escenarios de invasión que han dado lugar a distintos perfiles genéticos de las poblaciones invasoras. Por ejemplo, en Estados Unidos hay dos claras rutas de invasión, una hacia el oeste y otra hacia el este y el norte del área nativa. Las poblaciones del oeste de EEUU son más diversas genéticamente, probablemente porque se hayan transportado hasta allí cangrejos desde el área nativa en múltiples ocasiones, comenzando en la década de 1920. Los resultados genéticos señalan la zona oeste de EEUU (California), un área invadida, como el origen de las poblaciones invasoras de las Islas Hawái y una probable conexión con las poblaciones de Japón, y posteriormente en China. Los bajos niveles de diversidad genética del cangrejo rojo observados en Asia parecen corroborar el origen descrito en la literatura científica, donde un pequeño grupo de 20 cangrejos habría sido el origen de todas las poblaciones japonesas y chinas. En Europa se produjeron dos grandes introducciones desde Luisiana hacia el suroeste de España en 1973 (cerca de Badajoz) y 1974 (marismas del Guadalquivir), descritas por el propio promotor de ambas introducciones, el aristócrata Andrés Salvador de Habsburgo-Lorena. Las poblaciones generadas a partir de estas introducciones serían el origen de la mayor parte de las poblaciones europeas de esta especie. El gran número de individuos liberados en ambos eventos (250 hembras y 250 machos en Badajoz y más de 6.000 cangrejos en el Bajo Guadalquivir) ha propiciado que muchas poblaciones ibéricas del cangrejo rojo tengan elevados niveles de diversidad genética, aunque estos valores tienden a reducirse a medida que las poblaciones se alejan del suroeste ibérico. Sin embargo, un resultado inesperado del trabajo ha sido el hallazgo de un perfil genético único en las poblaciones del centro-oeste europeo, que no aparece en la península ibérica y que sugiere que otras introducciones no registradas hasta ahora han podido ocurrir desde otros lugares. información[at]ebd.csic.es: Oficialdegui et al (2019) Unravelling the global invasion routes of a worldwide invader, the red swamp crayfish (Procambarus clarkii). Freshwater Biol https://doi.org/10.1111/fwb.13312 


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13312
Promedio (0 Votos)

Últimas noticias Últimas noticias

Atrás

Los desafíos de construir Variables Esenciales de la Biodiversidad

Los desafíos de construir Variables Esenciales de la Biodiversidad

En todo el mundo se están recopilando muchos datos sobre biodiversidad, pero sigue siendo difícil reunir los conocimientos dispersos para evaluar el estado y las tendencias de la diversidad biológica. Se introdujo el concepto de Variables Esenciales de la Biodiversidad (Essential Biodiversity Variables EBVs) con el objetivo de estructurar el seguimiento de la biodiversidad a nivel mundial, y de armonizar y estandarizar los datos de biodiversidad procedentes de fuentes dispares para identificar un conjunto mínimo de variables críticas requeridas en el estudio y gestión de cambios en biodiversidad. Desde un enfoque de "macrodatos" (Big Data), se han revisado los retos que supone construir productos globales de EBVs a través de los taxones y escalas espacio-temporales, centrándose en la distribución y abundancia de especies. La mayoría de los datos actualmente disponibles sobre la distribución de especies deriva de observaciones registradas en modo puntual o mediante muestreos realizados periódicamente, siguiendo protocolos estandarizados, generando datos de "presencia" o "presencia-ausencia". La mayoría de los datos de abundancia se generan haciendo censos poblacionales puntuales o generando series a largo plazo de una población concreta, usando protocolos estandarizados (por ejemplo, censos repetidos de la misma población en un lugar concreto o en múltiples puntos). La complejidad que existe para integrar estos conjuntos heterogéneos de datos procedentes de múltiples fuentes a través del espacio, el tiempo, los taxones y los diferentes métodos de muestreo, es enorme. Su integración en productos globales de EBV requiere corregir sesgos introducidos por la detección incompleta y variaciones en el esfuerzo de muestreo, tratar con diferentes resoluciones y extensiones espaciales, armonizar unidades de medida de diferentes fuentes de datos o métodos de muestreo, aplicar herramientas y modelos estadísticos para inter- y extrapolación espaciales, y cuantificar fuentes de incertidumbre y errores en datos y modelos. Para apoyar el desarrollo de EBVs para la Red de Observación de la Biodiversidad del Observatorio de la Tierra (GEO BON), se han identificado 11 pasos clave en el flujo de trabajo que harán operativo el proceso de construcción de productos de EBVs dentro y entre infraestructuras de investigación en todo el mundo. Estos pasos en el flujo de trabajo tienen en cuenta múltiples actividades secuenciales, incluyendo la identificación y agregación de varias fuentes de datos brutos sin procesar, el control de calidad de datos, la asignación de nombres taxonómicos y el modelado estadístico de datos integrados. Estos pasos se ilustran con ejemplos concretos de proyectos existentes de monitoreo científico y profesional, incluyendo eBird, la Red de Monitoreo y Evaluación de la Ecología Tropical, el Índice del Planeta Vivo y el seguimiento del zooplancton del Mar Báltico. Los pasos identificados en el flujo de trabajo son aplicables tanto a sistemas terrestres y acuáticos como a una amplia gama de escalas espaciales, temporales y taxonómicas. Dependen de metadatos claros, localizables y accesibles, y se proporciona una visión general de los estándares actuales de datos y metadatos. Varios desafíos para la construcción de productos de datos de EBVs globales aún no se han resuelto: (i) desarrollar herramientas y modelos para combinar conjuntos de datos heterogéneos y multi-fuente y colmar las lagunas de datos en coberturas geográfica, temporal y taxonómica; (ii) integrar nuevos métodos y tecnologías emergentes para la recopilación de datos, como los generados por ciencia ciudadana, redes de sensores, técnicas basadas en el ADN y teledetección por satélite; (iii) resolver problemas técnicos importantes relacionados con la estructura del producto de datos, el almacenamiento de datos, la ejecución de flujos de trabajo y el proceso o ciclo de producción, así como el acercamiento a la interoperabilidad técnica; (iv) permitir la interoperabilidad semántica desarrollando y adoptando estándares y herramientas para capturar datos y metadatos consistentes; y (v) garantizar la interoperabilidad legal fomentando los datos abiertos o datos que estén libres de restricciones en su uso, modificación e intercambio. Abordar estos desafíos es fundamental para la investigación sobre la biodiversidad y para evaluar el progreso hacia las metas fijadas por las estrategias de conservación y el cumplimiento de los objetivos de desarrollo sostenible. informacion[at]ebd.csic.es: Kissling et al (2017) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev Doi 10.1111/brv.12359

 


http://onlinelibrary.wiley.com/doi/10.1111/brv.12359/abstract