Noticias Noticias

La variabilidad genética del cangrejo rojo americano revela su proceso de invasión

Un estudio ha descrito cómo han afectado los factores históricos, humanos y ambientales a la diversidad genética de las poblaciones invasoras del cangrejo rojo americano, Procambarus clarkii, en la península ibérica. Esta especie, nativa del sur de los EEUU y norte de México, es en la actualidad el cangrejo de agua dulce más cosmopolita del mundo y una de las especies con mayor impacto en la estructura y funcionamiento de los ecosistemas acuáticos. Este estudio supone un avance significativo en la comprensión del proceso de expansión de esta especie, identificando puntos útiles para su gestión. El cangrejo rojo americano fue legalmente introducido en la península ibérica en los años 70 mediante dos introducciones independientes. Un primer grupo de cangrejos se trajo desde Luisiana en 1973 y se libera en una finca cercana a Badajoz. Al año siguiente, se importó otro cargamento mucho mayor, con destino a la marisma cultivada del Guadalquivir, liberándose en una finca de la Puebla del Río. Estas dos introducciones supusieron el inicio de la rápida expansión del cangrejo por la península, que en cuestión de décadas fue prácticamente colonizada en su totalidad. Mediante el uso de herramientas genéticas, en este estudio se ha descrito la diversidad genética de 28 poblaciones de cangrejo rojo distribuidas por la península ibérica. Estas técnicas moleculares han permitido descubrir que los dos grupos introducidos en los años 70 se han expandido de forma casi independiente el uno del otro. El grupo introducido en Badajoz se expandió principalmente por Portugal, estando poco presente en España. En cambio, el grupo introducido en los arrozales del Bajo Guadalquivir, que fue más numeroso e implicó por tanto una mayor diversidad genética, predomina en España. De esta forma, las poblaciones actuales de cangrejo rojo en la Península presentan una estructura genética marcada, determinada por las dos introducciones originales que se produjeron hace casi 50 años. Además, el trabajo muestra que la expansión del cangrejo rojo en la península ibérica no ha sido progresiva, como ocurre en otras especies invasoras que se expanden a base de pequeños saltos a corta distancia; sino que ha implicado el movimiento de muchos cangrejos a larga distancia (o cangrejos transportados muchas veces) a determinados lugares que se han convertido en focos de dispersión secundaria o centros de invasión (del término inglés "invasion hub"). Estos centros de invasión presentan una elevada diversidad genética, pues se originan a partir de muchos individuos genéticamente diferentes, y han actuado como fuente para posteriores movimientos de cangrejo a muchos otros lugares. El estudio identifica la Albufera de Valencia y el Delta del Ebro como centros de invasión, pero señala que podría haber más. Sugiere además que allí donde las condiciones ambientales son más favorables para el cangrejo rojo, sus poblaciones tienden a ser genéticamente más diversas. Esto probablemente se deba a que en los lugares favorables se minimizan los cuellos de botella (o reducción drástica del número de individuos de una población) durante el proceso de establecimiento de las poblaciones introducidas. Las especies invasoras suponen una gran amenaza para la biodiversidad a nivel mundial, y una vez establecidas son muy difíciles de erradicar, provocando grandes alteraciones en los ecosistemas. Por ello, prevenir su introducción es de gran importancia de cara a la conservación de la biodiversidad, especialmente en los ecosistemas de agua dulce que son muy vulnerables. En el caso del cangrejo rojo, el ser humano ha tenido un papel clave, introduciendo primero la especie en la Península y, posteriormente, moviendo individuos entre diferentes cuencas fluviales. Por tanto, las medidas de gestión deberían dirigirse a prevenir las traslocaciones de individuos vivos, así como centrarse en las áreas que actúan como centros de invasión para evitar una mayor expansión. informacion[at]ebd.csic.es: Acevedo-Limón et al (2020) Historical, human, and environmental drivers of genetic diversity in the red swamp crayfish (Procambarus clarkii) invading the Iberian Peninsula. Freshwater Biology. Doi 10.1111/fwb.13513


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13513
Promedio (0 Votos)

Últimas noticias Últimas noticias

Atrás

Los desafíos de construir Variables Esenciales de la Biodiversidad

Los desafíos de construir Variables Esenciales de la Biodiversidad

En todo el mundo se están recopilando muchos datos sobre biodiversidad, pero sigue siendo difícil reunir los conocimientos dispersos para evaluar el estado y las tendencias de la diversidad biológica. Se introdujo el concepto de Variables Esenciales de la Biodiversidad (Essential Biodiversity Variables EBVs) con el objetivo de estructurar el seguimiento de la biodiversidad a nivel mundial, y de armonizar y estandarizar los datos de biodiversidad procedentes de fuentes dispares para identificar un conjunto mínimo de variables críticas requeridas en el estudio y gestión de cambios en biodiversidad. Desde un enfoque de "macrodatos" (Big Data), se han revisado los retos que supone construir productos globales de EBVs a través de los taxones y escalas espacio-temporales, centrándose en la distribución y abundancia de especies. La mayoría de los datos actualmente disponibles sobre la distribución de especies deriva de observaciones registradas en modo puntual o mediante muestreos realizados periódicamente, siguiendo protocolos estandarizados, generando datos de "presencia" o "presencia-ausencia". La mayoría de los datos de abundancia se generan haciendo censos poblacionales puntuales o generando series a largo plazo de una población concreta, usando protocolos estandarizados (por ejemplo, censos repetidos de la misma población en un lugar concreto o en múltiples puntos). La complejidad que existe para integrar estos conjuntos heterogéneos de datos procedentes de múltiples fuentes a través del espacio, el tiempo, los taxones y los diferentes métodos de muestreo, es enorme. Su integración en productos globales de EBV requiere corregir sesgos introducidos por la detección incompleta y variaciones en el esfuerzo de muestreo, tratar con diferentes resoluciones y extensiones espaciales, armonizar unidades de medida de diferentes fuentes de datos o métodos de muestreo, aplicar herramientas y modelos estadísticos para inter- y extrapolación espaciales, y cuantificar fuentes de incertidumbre y errores en datos y modelos. Para apoyar el desarrollo de EBVs para la Red de Observación de la Biodiversidad del Observatorio de la Tierra (GEO BON), se han identificado 11 pasos clave en el flujo de trabajo que harán operativo el proceso de construcción de productos de EBVs dentro y entre infraestructuras de investigación en todo el mundo. Estos pasos en el flujo de trabajo tienen en cuenta múltiples actividades secuenciales, incluyendo la identificación y agregación de varias fuentes de datos brutos sin procesar, el control de calidad de datos, la asignación de nombres taxonómicos y el modelado estadístico de datos integrados. Estos pasos se ilustran con ejemplos concretos de proyectos existentes de monitoreo científico y profesional, incluyendo eBird, la Red de Monitoreo y Evaluación de la Ecología Tropical, el Índice del Planeta Vivo y el seguimiento del zooplancton del Mar Báltico. Los pasos identificados en el flujo de trabajo son aplicables tanto a sistemas terrestres y acuáticos como a una amplia gama de escalas espaciales, temporales y taxonómicas. Dependen de metadatos claros, localizables y accesibles, y se proporciona una visión general de los estándares actuales de datos y metadatos. Varios desafíos para la construcción de productos de datos de EBVs globales aún no se han resuelto: (i) desarrollar herramientas y modelos para combinar conjuntos de datos heterogéneos y multi-fuente y colmar las lagunas de datos en coberturas geográfica, temporal y taxonómica; (ii) integrar nuevos métodos y tecnologías emergentes para la recopilación de datos, como los generados por ciencia ciudadana, redes de sensores, técnicas basadas en el ADN y teledetección por satélite; (iii) resolver problemas técnicos importantes relacionados con la estructura del producto de datos, el almacenamiento de datos, la ejecución de flujos de trabajo y el proceso o ciclo de producción, así como el acercamiento a la interoperabilidad técnica; (iv) permitir la interoperabilidad semántica desarrollando y adoptando estándares y herramientas para capturar datos y metadatos consistentes; y (v) garantizar la interoperabilidad legal fomentando los datos abiertos o datos que estén libres de restricciones en su uso, modificación e intercambio. Abordar estos desafíos es fundamental para la investigación sobre la biodiversidad y para evaluar el progreso hacia las metas fijadas por las estrategias de conservación y el cumplimiento de los objetivos de desarrollo sostenible. informacion[at]ebd.csic.es: Kissling et al (2017) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev Doi 10.1111/brv.12359

 


http://onlinelibrary.wiley.com/doi/10.1111/brv.12359/abstract