Latest News Latest News

Las altas temperaturas están provocando que las lagunas y las marismas de Doñana pierdan agua rápidamente

La superficie inundada en la marisma es de un 78% pero la profundidad es escasa. Por otra parte, sólo el 1,9% de las lagunas temporales están inundadas. Las precipitaciones crean una oportunidad...

Traffic noise causes lifelong harm to baby birds

A study with CSIC participation reveals for the first time that car noise harms individuals throughout their lifetime even years after exposure

Illegal wildlife trade, a serious problem for biodiversity and human health

A research team led by the Doñana BIological Station and the University Pablo de Olavide have detected wild-caught pets in 95% of the localities in the Neotropic and warns of the risk of zoonotic...

Urbanization and loss of woody vegetation are changing key traits of arthropod communities

Urbanization is favouring smaller beetle species and larger spider species with greater dispersal capacity.

The loss of woody areas is linked to a decline in the duration of the activity...

Asset Publisher Asset Publisher

Back

Plant species abundance and phylogeny explain the structure of recruitment networks

Plant species abundance and phylogeny explain the structure of recruitment networks

Established plants can affect the recruitment of young plants, filtering out some and allowing the recruitment of others, with profound effects on plant community dynamics. Recruitment networks (RNs) depict which species recruit under which others. Here, whether species abundance and phylogenetic distance explain the structure of RNs across communities is investigated. The frequency of canopy–recruit interactions among woody plants in 10 forest assemblages to describe their RNs is estimated. For each RN, authors determined the functional form (linear, power or exponential) best describing the relationship of interaction frequency with three predictors: canopy species abundance, recruit species abundance and phylogenetic distance. Models were fitted with all combinations of predictor variables, from which RNs were simulated. The best functional form of each predictor was the same in most communities (linear for canopy species abundance, power for recruit species abundance and exponential for phylogenetic distance). The model including all predictor variables was consistently the best in explaining interaction frequency and showed the best performance in predicting RN structure. Results suggest that mechanisms related to species abundance are necessary but insufficient to explain the assembly of RNs. Evolutionary processes affecting phylogenetic divergence are critical determinants of RN structure. informacion[at]ebd.csic.es: Alcántara et al (2019) Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytol doi: 10.1111/nph.15774

 


https://www.ncbi.nlm.nih.gov/pubmed/30843205