Latest News Latest News

Las altas temperaturas están provocando que las lagunas y las marismas de Doñana pierdan agua rápidamente

La superficie inundada en la marisma es de un 78% pero la profundidad es escasa. Por otra parte, sólo el 1,9% de las lagunas temporales están inundadas. Las precipitaciones crean una oportunidad...

Traffic noise causes lifelong harm to baby birds

A study with CSIC participation reveals for the first time that car noise harms individuals throughout their lifetime even years after exposure

Illegal wildlife trade, a serious problem for biodiversity and human health

A research team led by the Doñana BIological Station and the University Pablo de Olavide have detected wild-caught pets in 95% of the localities in the Neotropic and warns of the risk of zoonotic...

Urbanization and loss of woody vegetation are changing key traits of arthropod communities

Urbanization is favouring smaller beetle species and larger spider species with greater dispersal capacity.

The loss of woody areas is linked to a decline in the duration of the activity...

Asset Publisher Asset Publisher

Back

The functional connectivity network of wintering gulls links seven habitat types, acting ricefields as the central node

The functional connectivity network of wintering gulls links seven habitat types, acting ricefields as the central node

The lesser black-backed gull is now the second most abundant wintering waterbird in Andalusian wetlands. Many birds are fitted with GPS loggers on their breeding grounds in northern Europe, and using 42 tagged individuals we studied the connectivity network between different sites and habitats in Andalusia. Thirty seven principal sites (nodes) from seven different habitats (ricefields, landfills, natural lakes, reservoirs, fish ponds, coastal marshes and ports) were identified. By analysing nearly 6,000 gull flights, it was found that Doñana ricefields are the most important node in the network, but that 90% of flights are made between a wetland and a landfill. The 37 nodes are split into 10 functional units (modules) in which gulls tend to fly daily and up to 60 km between a wetland roost site, and a landfill feeding site. This network allows to predict how gulls contribute to seed dispersal, wetland eutrophication, and the spread of pathogens such as antibiotic resistant bacteria. informacion[at]ebd.csic.es: Martín-Vélez et al (2019) Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Science Total Environm 107: 135886 DOI 10.1016/j.scitotenv.2019.135886


https://www.sciencedirect.com/science/article/pii/S0048969719358814?via%3Dihub#ab0005