Latest News Latest News

Las altas temperaturas están provocando que las lagunas y las marismas de Doñana pierdan agua rápidamente

La superficie inundada en la marisma es de un 78% pero la profundidad es escasa. Por otra parte, sólo el 1,9% de las lagunas temporales están inundadas. Las precipitaciones crean una oportunidad...

Traffic noise causes lifelong harm to baby birds

A study with CSIC participation reveals for the first time that car noise harms individuals throughout their lifetime even years after exposure

Illegal wildlife trade, a serious problem for biodiversity and human health

A research team led by the Doñana BIological Station and the University Pablo de Olavide have detected wild-caught pets in 95% of the localities in the Neotropic and warns of the risk of zoonotic...

Urbanization and loss of woody vegetation are changing key traits of arthropod communities

Urbanization is favouring smaller beetle species and larger spider species with greater dispersal capacity.

The loss of woody areas is linked to a decline in the duration of the activity...

Asset Publisher Asset Publisher

Back

Stochastic and deterministic effects on interactions between canopy and recruiting species in forest communities

Stochastic and deterministic effects on interactions between canopy and recruiting species in forest communities

Interactions between established (canopy) and recruiting individuals (recruits) are pervasive in plant communities. Studies on recruitment in forests have mainly focused on negative density-dependent conspecific interactions, while the outcomes of heterospecific canopy–recruit interactions have received much less attention and are generally assumed to be driven by stochastic processes. Herein, the relative influence of stochastic (abundance) and deterministic (species identity and phylogenetic distance) effects on the frequency of canopy–recruit interactions are explored, and the interactions in terms of their spatial consistency and effect on recruitment (depressing, neutral or enhancing) are characterized. In 12 plots (50 × 50 m) of mixed pine–oak forests in southern Spain, all saplings recruiting beneath 56 shrub and tree species, and in open areas not covered by woody plants were identified. Generalized linear mixed models were used to investigate the influence of stochastic and deterministic processes on the frequency of canopy– recruit interactions, on their spatial consistency and their effects on recruitment, and applied neutral null models to evaluate the spatial consistency in the occurrence of interactions across plots. Deterministic and stochastic interactions were equally common, emphasizing the prevalence of non-neutral effects. Among the realized interactions, 36.8% enhanced recruitment, 49.05% were neutral, and 14.1% depressed recruitment. Many potential interactions (42.08%) were not observed in any study sites, presumably due to the scarcity of the interacting species. Moreover, the probability that two species formed a canopy–recruit interaction, the frequency of their interaction and the probability that the interaction had an enhancing effect on recruitment, all increased with the phylogenetic distance between the interacting species. However, the prevalence of these effects depended on the recruitment environment (heterospecific, conspecific or open). Recruitment-enhancing interactions between heterospecifics were more consistently realized in different sites than neutral or depressing interactions. The establishment of canopy–recruit interactions (which species recruits beneath which others, and how often) is not simply determined by stochastic events. Indeed, due to their prevalence, deterministic canopy–recruit interactions may be important drivers of plant community dynamics. informacion[at]ebd.csic.es: Alcántara et al 2018. Stochastic and deterministic effects on interactions between canopy and recruiting species in forest communities. Functional Ecology 32: 2264–2274. https://doi.org/10.1111/1365-2435.13140


https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13140