News News

Optimization of protocols for DNA extraction from fecal samples

High-throughput sequencing offers new possibilities in molecular ecology and conservation studies. However, its potential has not yet become fully exploited for noninvasive studies of free–ranging animals, such as those based on feces. High–throughput sequencing allows sequencing of short DNA fragments and could allow simultaneous genotyping of a very large number of samples and markers at a low cost. The application of high throughput genotyping to fecal samples from wildlife has been hindered by several labor intensive steps. Alternative protocols which could allow higher throughput were evaluated for two of these steps: sample collection and DNA extraction. Two different field sampling and seven different DNA extraction methods were tested on grey wolf (Canis lupus) feces. There was high variation in genotyping success rates. The field sampling method based on surface swabbing performed much worse than the extraction from a fecal fragment. In addition, there is a lot of room for improvement in the DNA extraction step. Optimization of protocols can lead to very much more efficient, cheaper and higher throughput noninvasive monitoring. Selection of appropriate markers is still of paramount importance to increase genotyping success. informacion[at]ebd.csic.es: Sarabia et al (2020) Towards high-throughput analyses of fecal samples from wildlife. Animal Biodiver Conserv 43.2: 271–283 Doi 10.32800/abc.2020.43.0271


http://abc.museucienciesjournals.cat/volum-43-2-2020/towards-high-throughput-analyses-of-fecal-samples-from-wildlife/?lang=en
Average (0 Votes)

Latest News Latest News

Back

Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens

Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens

When a population shows a marked morphological change, it is important to know whether that population is genetically distinct; if it is not, the novel trait could correspond to an adaptation that might be of great ecological interest. Here, a subspecies of water shrew, Neomys fodiens niethammeri, which is found in a narrow strip of the northern Iberian Peninsula was studied. This subspecies presents an abrupt increase in skull size when compared to the rest of the Eurasian population, which has led to the suggestion that it is actually a different species. Skulls obtained from owl pellets collected over the last 50 years allowed performing a morphometric analysis in addition to an extensive multilocus analysis based on short intron fragments successfully amplified from these degraded samples. Interestingly, no genetic divergence was detected using either mitochondrial or nuclear data. Additionally, an allele frequency analysis revealed no significant genetic differentiation. The absence of genetic divergence and differentiation revealed here indicate that the large form of N. fodiens does not correspond to a different species and instead represents an extreme case of size increase, of possible adaptive value, which deserves further investigation. informacion[at]ebd.csic.es: Balmori-de la Puente et al (2019) Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens. Sci Rep doi:10.1038/s41598-019-53891-y


https://www.nature.com/articles/s41598-019-53891-y