News News

Impairment of mixed melanin-based pigmentation in parrots

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form (pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated to pheomelanin synthesis, this study assumed that the latter would be avoided by psittaciform birds. This hypothesis was tested by using Raman spectroscopy to identify pigments in feathers exhibiting colors suspicious of being produced by pheomelanin (i.e., dull red, yellow and grey- and green-brownish) in 26 species from the three main lineages of Psittaciformes. The non-sulphurated melanin form (eumelanin) were detected in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but no evidence of pheomelanin was found. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, these results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. The study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity. informacion[at]ebd.csic.es: Neves et al (2020) Impairment of mixed melanin-based pigmentation in parrots. J Experim Biol. DOI 10.1242/jeb.225912


https://jeb.biologists.org/content/early/2020/05/08/jeb.225912
Average (0 Votes)

Latest News Latest News

Understanding the processes leading to fossilization

Modern death assemblages provide insights about the early stages of fossilization and useful ecological information about the species inhabiting the ecosystem. The results of taphonomic monitoring...

Models for human porphyrias: Have animals in the wild been overlooked?

Humans accumulate porphyrins in the body mostly during the course of porphyrias, diseases caused by defects in the enzymes of the heme biosynthesis pathway and that produce acute attacks, skin...

Combined effects of global change on bumblebees

The decline in bee populations has recently attracted much attention from researchers, conservationists and the general public, with insect-mediated pollination being a key process for terrestrial...

Artificial light at night as a driver of urban colonization

Urbanization and artificial light at night (ALAN) are major drivers of local biodiversity losses causing community alterations, disruption of predator-prey interactions, and ultimately, promotion...

A new subspecies of Manx shearwater to the Canary Islands

The taxonomy of Procellariiformes, particularly petrels and shearwaters, is still unresolved. The Manx shearwater Puffinus puffinus is one of the best studied seabirds worldwide. Most of the...