Content with tag ecophysiology .

Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae

Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae

Organisms react to environmental changes through plastic responses that often involve physiological alterations with the potential to modify life-history traits and fitness. Environmentally induced shifts in growth and development in species with complex life cycles determine the timing of transitions between subsequent life stages, as well as body condition at transformation, which greatly determine survival at later stages. This study shows that spadefoot toad larvae surviving pond drying and predators experienced marked alterations in growth and development, and in their fat reserves, oxidative stress, and relative telomere length. Tadpoles accelerated development but reduced growth and consumed more fat reserves when facing pond drying. However, oxidative stress was buffered by increased antioxidant enzyme activity, and telomeres remained unchanged. Predators caused opposite effects: they reduced larval density, hence relaxing competition and allowing faster development and enhanced growth of survivors. Tadpoles surviving predators metamorphosed bigger and had larger fat bodies, increasing their short-term survival odds, but showed signs of oxidative stress and had shorter telomeres. Developmental acceleration and enhanced growth thus seemed to have different physiological consequences: reduced fat bodies and body size compromise short-term survival, but are reversible in the long run, whereas telomere shortening is non-reversible and could reduce long-term survival. informacion[at]ebd.csic.es: Burraco et al (2017) Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci Rep doi:10.1038/s41598-017-07201-z


https://www.nature.com/articles/s41598-017-07201-z

— 1 Items per Page
Showing 1 - 1 of 3 results.

Content with tag ecophysiology .

Accommodation of developmental plasticity explains adaptive divergence among spadefoot toads

Phenotypic differences among species may evolve through genetic accommodation, but mechanisms accounting for this process are poorly understood. Here hormonal variation underlying differences in...

Wetland salinity induces carry-over effects in the physical conditions of a long-distance migrant

Salinization is having a major impact on wetlands and its biota worldwide. Specifically, many migratory animals that rely on wetlands are increasingly exposed to elevated salinity on their...