News News

Impairment of mixed melanin-based pigmentation in parrots

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form (pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated to pheomelanin synthesis, this study assumed that the latter would be avoided by psittaciform birds. This hypothesis was tested by using Raman spectroscopy to identify pigments in feathers exhibiting colors suspicious of being produced by pheomelanin (i.e., dull red, yellow and grey- and green-brownish) in 26 species from the three main lineages of Psittaciformes. The non-sulphurated melanin form (eumelanin) were detected in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but no evidence of pheomelanin was found. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, these results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. The study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity. informacion[at]ebd.csic.es: Neves et al (2020) Impairment of mixed melanin-based pigmentation in parrots. J Experim Biol. DOI 10.1242/jeb.225912


https://jeb.biologists.org/content/early/2020/05/08/jeb.225912
Average (0 Votes)

Latest News Latest News

Back

The effect of body size and habitat on the evolution of alarm vocalizations in rodents

The effect of body size and habitat on the evolution of alarm vocalizations in rodents

When confronted with a predator, many mammalian species emit vocalizations known as alarm calls. Vocal structure variation results from the interactive effects of different selective pressures and constraints affecting their production, transmission, and detection. Body size is an important morphological constraint influencing the lowest frequencies that an organism can produce. The acoustic environment influences signal degradation; low frequencies should be favoured in dense forests compared to more open habitats (i.e. the ‘acoustic adaptation hypothesis'). Such hypotheses have been mainly examined in birds, whereas the proximate and ultimate factors affecting vocalizations in nonprimate mammals have received less attention. In the present study, we investigated the relationships between the frequency of alarm calls, body mass, and habitat in 65 species of rodents. Although we found the expected negative relationship between call frequency and body mass, we found no significant differences in acoustic characteristics between closed and open-habitat species. The results of the present study show that the acoustic frequencies of alarm calls can provide reliable information about the size of a sender in this taxonomic group, although they generally do not support the acoustic adaptation hypothesis. informacion[at]ebd.csic.es: García-Navas & Blumstein (2016). The effect of body size and habitat on the evolution of alarm vocalizations in rodents. Biol J Linn Soc DOI: 10.1111/bij.12789


http://onlinelibrary.wiley.com/doi/10.1111/bij.12789/abstract