News News

Influencia diferencial de la expresión de Slc7a11 y la condición corporal sobre la pigmentación producida por feomelanina en dos poblaciones de trepador azul Sitta europea con diferente riesgo de depredación

The expression of the gene Slc7a11 promotes the antioxidant capacity of cells by providing them with cysteine that can be used for the synthesis of glutathione (GSH), the most important intracellular antioxidant. In melanocytes, intracellular cysteine can also enter melanosomes and get incorporated in the pigment pheomelanin synthesis pathway, thus decreasing cysteine availability for GSH synthesis and potentially creating chronic oxidative stress. Therefore, this study hypothesized that a mechanism limiting the use of intramelanocytic cysteine for pheomelanin synthesis in environmental conditions generating oxidative stress may be physiologically advantageous and favored by natural selection. Evidence we searched of such a mechanism by comparing the influence of melanocytic Slc7a11 expression on pheomelanin?based pigmentation in developing Eurasian nuthatch Sitta europaea nestlings from two populations differing in predation risk, a natural source of oxidative stress. Pheomelanin synthesis and pigmentation tended to increase with Slc7a11 expression in the low?risk population as expected from the activity of this gene, but decreased with Slc7a11 expression in the high?risk population. The same was not observed in the expression of five other genes influencing pheomelanin synthesis without affecting cysteine availability in melanocytes. The influence of body condition on the intensity of pheomelanin?based pigmentation also differed between populations, being positive in the low?risk population and negative in the high?risk population. The resulting pigmentation of birds was more intense in the high?risk population. These findings suggest that birds perceiving high predation risk may limit the use of cysteine for pheomelanin synthesis, which becomes independent of Slc7a11 expression. Some birds may have thus evolved the ability to adjust their pigmentation phenotype to environmental stress. informacion[at] Galván & Sanz (2020) Differential influence of Slc7a11 expression and body condition on pheomelanin-based pigmentation in two Eurasian nuthatch Sitta europaea populations with different predation risk. J Avian Biol DOI 10.1111/jav.02275
Average (0 Votes)

Latest News Latest News


Intact but empty forests? Patterns of hunting induced mammal defaunation in the tropics

Intact but empty forests? Patterns of hunting induced mammal defaunation in the tropics

Tropical forests are increasingly degraded by industrial logging, urbanization, agriculture, and infrastructure, with only 20% of the remaining area considered intact. However, this figure does not include other, more cryptic but pervasive forms of degradation, such as overhunting. Here, the spatial patterns of mammal defaunation in the tropics are quantified and mapped using a database of 3,281 mammal abundance declines from local hunting studies. Simultaneously population abundance declines and the probability of local extirpation of a population were accounted for as a function of several predictors related to human accessibility to remote areas and species' vulnerability to hunting. An average abundance decline of 13% across all tropical mammal species was estimated, with medium-sized species being reduced by >27% and large mammals by >40%. Mammal populations are predicted to be partially defaunated (i.e., declines of 10%–100%) in ca. 50% of the pantropical forest area (14 million km2), with large declines (>70%) in West Africa. According to these projections, 52% of the intact forests (IFs) and 62% of the  wilderness areas (WAs) are partially devoid of large mammals, and hunting may affect mammal populations in 20% of protected areas (PAs) in the tropics, particularly in West and Central Africa and Southeast Asia. The pervasive effects of overhunting on tropical mammal populations may have profound ramifications for ecosystem functioning and the livelihoods of wild-meat-dependent communities, and underscore that forest coverage alone is not necessarily indicative of ecosystem intactness. The authors call for a systematic consideration of hunting effects in (large-scale) biodiversity assessments for more representative estimates of human-induced biodiversity loss. informacion[at] Benítez-Lopez et al (2019) Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol