News News

Impact of fisheries on sea turtles

The bycatch of sea turtles by industrial fisheries is receiving an increasing attention in recent years due to the high impact it causes on these endangered species. This issue was evaluated in southern Spain waters that harbors an important feeding ground of loggerhead and leatherback turtles, including the endangered Eastern Atlantic loggerhead population. To quantify the impact that different fisheries represents to sea turtles, 272 fishermen answered to detailed illustrated questionnaires in all the main ports of Andalusia and Murcia (Spain) during 2014. This study has updated the knowledge of turtle bycatch in the southwestern Mediterranean revealing a widespread impact of fisheries on sea turtles. Fishermen recognized an annual catch of 2.3 turtles per boat. Considering the census of industrial fishing boats in the study area (1182), more than 2840 sea turtles could be bycaught per year in the study area. Most of captures (96.2%) were produced during the summer. These results suggest a severe impact of most of legal fisheries (surface longline, pursue seine, trawling and small scale fisheries) on loggerhead feeding grounds in the southwestern Mediterranean. Fishermen suggests that drift fishing conducted by foreign or illegal fishermen and almadrabas are also causing a significant bycatch of turtles. Several measures such as reviewing compliance of current fishing and environmental regulations, modifying turtle technics to reduce turtle bycatch (e.g. reduction of the use of squid as bait and disposal of hooks deeper in the water column), facilitating the rescue and handle of wound turtles and their transport to the port for recovery, and recognizing the efforts of anglers to perform a more sustainable fishing, are recommended to mitigate this impact. informacion[at] Marco et al (2020) Sea turtle bycatch by different types of fisheries in southern Spain. Basic and Applied Herpetology
Average (0 Votes)

Latest News Latest News


Adaptation to high-altitude habitats in the Eastern honey

Adaptation to high-altitude habitats in the Eastern honey

The Eastern honey bee Apis cerana is of central importance for agriculture in Asia. It has adapted to a wide variety of environmental conditions across its native range in southern and eastern Asia, which includes high?altitude regions. Eastern honey bees inhabiting mountains differ morphologically from neighboring lowland populations, and may also exhibit differences in physiology and behavior. The genomes of 60 Eastern honey bees collected from high and low altitudes in Yunnan and Gansu provinces, China, were compared to infer their evolutionary history and to identify candidate genes that may underlie adaptation to high altitude. Using a combination of F_ST?based statistics, long?range haplotype tests, and population branch statistics, several regions of the genome were identified that appear to have been under positive selection. These candidate regions were strongly enriched for coding sequences and had high haplotype homozygosity and increased divergence specifically in highland bee populations, suggesting they have been subjected to recent selection in high altitude habitats. Candidate loci in these genomic regions included genes related to reproduction and feeding behavior in honey bees. Functional investigation of these candidate loci is necessary to fully understand the mechanisms of adaptation to high?altitude habitats in the Eastern honey bee. The results of this research will be very useful to monitor the populations of Asian bees and establish conservation priorities. Pollination services provided by bees are essential for food production throughout the world, but Asian bee populations in China have been declining since the early 20th century due to changes in agricultural practices and the introduction of non-native bees. Therefore, it is important to understand how populations of this species adapt to different environmental conditions such as altitude, as this can help improve conservation efforts and management. informacion[at] Montero-Mendieta et al (2018) The genomic basis of adaptation to high-altitude habitats in the Eastern honey bee (Apis cerana). Mol Ecol DOI 10.1111/mec.14986.