News News

Army ant invasion of leatherback nests in Gabon

Egg mortality is one of the main factors affecting life history and conservation of oviparous species. A massive and cryptic colonisation of many leatherback turtle (Dermochelys coriacea) eggs is presented in the most important rookery for the species in Gabon. A total of 163 nests were exhumed at Kingere beach, revealing that only 16.7% of eggs produced hatchlings. In the 59% of the nests, more than half of the eggs were dead and attacked by invertebrates and 94% had at least one egg affected by invertebrates. The rate of eggs and SAGs (yolkless eggs) affected by invertebrates within a clutch ranged from 0% to 100%, with an average proportion of 39% and 52%, respectively. The most common invertebrates interacting with the eggs were ghost crabs and insects that affected 51% and 82% of the nests, respectively. Crab and insect co-occurred in 33% of the affected nests. Ants, identified as Dorylus spininodis (Emery 1901) were found in 56% of the excavated nests. However, it was not possible to determine if the ants predated alive eggs or scavenged dead eggs. Very often, hundreds of ants were found drowned within dead eggs. Termites and other invertebrates were associated with the clutch environment and identified as opportunistic feeders, being this is the first record of interaction between termites and sea turtle eggs. An unusual ecological interaction within the leatherback clutches between termites and ants was found in 11% of the nests. The abrupt transition between the soil forest and the beach might be favouring a thriving microbial and invertebrate activity in the sand profile that colonises the nests. informacion[at]ebd.csic.es: Ikaran et al (2020) Cryptic massive nest colonisation by ants and termites in the world's largest leatherback turtle rookery Ethol Ecol Evol 2020. Doi 10.1080/03949370.2020.1715487


https://www.tandfonline.com/doi/abs/10.1080/03949370.2020.1715487
Average (0 Votes)

Latest News Latest News

Back

Less abundant animal and plant species gather in ghettos in order to survive

Less abundant animal and plant species gather in ghettos in order to survive

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. The positive and negative spatial association networks of 326 disparate assemblages was described showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments. información[at]ebd.csic.es: Calatayud et al (2019) Positive associations among rare species and their persistence in ecological assemblages. Nature Ecol Evol. DOI 10.1038/s41559-019-1053-5.


https://www.nature.com/articles/s41559-019-1053-5