News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at]ebd.csic.es: Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News

Back

Interspecific interactions determine the range-wide distribution and genomic variation in two Californian oaks

Interspecific interactions determine the range-wide distribution and genomic variation in two Californian oaks

Organisms interact with each other in very different ways. These interactions include, among many others, those established between prey and predators, hosts and parasites, and plant roots and beneficial mycorrhizal fungi. Plants also interact among them, competing for resources (e.g., water, light or nutrients) or creating a favorable environment (e.g., shade) that facilitates the establishment and survival of seedlings from other species. Although classic ecological studies have profoundly analyzed interactions among plant species at small spatial scales (a few meters), very little is known about how such interactions translate into large-scale patterns of species distributions. In this recent study, for the first time it was we analyzed how plant-plant interactions can potentially impact the distribution and range-wide patterns of genomic variation in two Californian oaks, the scrub oak (Quercus berberidifolia) and the canyon live oak (Quercus chrysolepis). Specifically, genomic data were used to test and validate alternative distributional and gene flow models considering how these two focal species might have been affected by hypothetical interactions (negative or positive) exerted by the rest of oak taxa from the Californian species-rich oak community. This study revealed that both positive and negative interactions with other oaks have shaped the distribution and spatial patterns of genomic variation in the two studied species, supporting that the consequences of biotic interactions transcend much larger geographical scales than the traditional local focus of classic ecological studies. These results also have important implications for conservation research: the integration of interspecific interactions into predictive models is expected to considerable improve our capacity to forecast the responses of species and whole communities to global warming, which can ultimately help to mitigate its pernicious consequences on biodiversity. informacion[at]ebd.csic.es: Ortego & Knowles (2020) Incorporating interspecific interactions into phylogeographic models: A case study with Californian oaks. Mol Ecol DOI 10.1111/mec.15548


https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15548