News News

Strategies shrubby junipers adopt to tolerate drought differ by site

Drought-induced dieback episodes are globally reported among forest ecosystems but they have been understudied in scrublands. Chronically-stressed individuals are supposed to be more vulnerable prior to drought which triggers death. Drought-triggered dieback and mortality events affecting Mediterranean Juniperus phoenicea scrublands were analyzed in two sites with contrasting climate and soil conditions located in Spain. The radial growth patterns of coexisting living and dead junipers, including the calculation of growth statistics used as early-warning signals, quantified growth response to climate, were characterized and the wood C and O isotope discrimination was analyzed. In the inland, continental site with rocky substrates (Yaso, Huesca, N Spain), dead junipers grew less than living junipers about three decades prior to the dieback started in 2016. However, in the coastal, mild site with sandy soils (Doñana, Huelva, SW Spain), dead junipers were smaller but grew more than living junipers about two decades before the dieback onset in 2005. The only common patterns between sites were the higher growth coherence in both living and dead junipers prior to the dieback, and the decrease in growth persistence of dead junipers. Cool and wet conditions in the prior winter and current spring, and cool summer conditions enhanced juniper growth. In Doñana, growth of living individuals was more reduced by warm July conditions than in the case of dead individuals. Higher ?13C values in Yaso indicate also more pronounced drought stress. In Yaso, dead junipers presented lower ?18O values, but the opposite occurred in Doñana suggesting different changes in stomatal conductance prior to death. Warm summer conditions enhance evapotranspiration rates and trigger dieback in this shallow-rooted species, particularly in sites with a poor water-holding capacity. Chronic, slow growth is not always a reliable predictor of drought-triggered mortality. informacion[at] Camarero et al (2020) Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agr Forest Meteorol 291, 108078. DOI 10.1016/j.agrformet.2020.108078
Average (0 Votes)

Latest News Latest News


Demographic processes in colonial vulture species

Demographic processes in colonial vulture species

Understanding how density dependence modifies demographic parameters in long-lived vertebrates is a challenge for ecologists. Two alternative hypotheses have been used to explain the mechanisms behind density-dependent effects on breeding output: habitat heterogeneity and individual adjustment (also known as interference competition). A number of studies have highlighted the importance of habitat heterogeneity in density dependence in territorial species, but less information exists on demographic processes in colonial species. For these, we expect density-dependent mechanisms to operate at two spatial scales: colony and breeding unit. In this study, long-term data from a recovering population of Cinereous Vultures in southern Spain were used to evaluate environmental and population parameters influencing breeding output. Results suggest that breeding productivity is subject to density-dependent processes at the colony and the nest site scale and is best explained by interference competition. Factors intrinsic to each colony, as well as environmental constraints linked to physiography and human presence, also play a role in regulatory processes. The existence of a trade-off between the disadvantages of nesting too close to conspecifics and the benefits of coloniality was detected. This trade-off may play a role in defining colony structure and may hold true for other colonial breeding bird species. Findings also have important management implications for the conservation of this threatened species. informacion[at] Fernández-Bellon et al (2016) Density-dependent productivity in a colonial vulture at two spatial scales. Ecology 97: 406–416. doi:10.1890/15-0357.1