Migratory waterbirds as key vectors for the co-dispersal of alien and native species in different biomes (CODISPERSION)
Aves migratorias como vectores claves de co-dispersion de especies nativas y exóticas en distintos biomas (CODISPERSION)
Principal investigator
Andy J. Green
Financial institution
MIN ECONOMÍA Y COMPETITIVIDAD
Fecha de inicio
Fecha de fin
Code
CGL2016-76067-P
Department
Conservation Biology and Global Change
Researchers
Sanchez, Marta; Maceda-Veiga, Alberto; Redón, Estela
Brief description
Las aves migradoras actúan como vectores de dispersión de una amplia variedad de organismos con una capacidad limitada de dispersión. La co-dispersión de organismos por aves es un proceso que afecta de forma fundamental a la biogeografía, genética de poblaciones y metacomunidades de una amplia variedad de plantas, invertebrados y microbios. Se ha asumido que las aves son importantes vectores de dispersión sólo en plantas con frutos carnosos. Sin embargo estudios recientes muestran que las aves acuáticas dispersan semillas con todo tipo de morfología y estructura. Son urgentes estudios que clarifiquen el papel de las aves en la dispersión de plantas, ya que los modelos existentes sugieren que sólo las aves migradoras permiten un movimiento de plantas suficientemente rápido para seguir el ritmo del cambio climático. Además necesitamos entender qué plantas invasoras están expandiéndose vía aves acuáticas para poder manejarlas y predecir su futura expansión. A pesar de que las aves se han considerado como vectores de invertebrados nativos y exóticos, a parte de nuestros proyectos previos con Artemia, existe poca evidencia empírica de dicha dispersión. Darwin mostró experimentalmente que las aves piscívoras pueden dispersar propágulos ingeridos por los peces, pero las observaciones de dicha dispersión en el campo son anecdóticas. Este proyecto profundiza en los procesos de co-dispersión usando modelos de vectores en diferentes biomas afectados por el cambio global. Basado en estudios previos, se centra en aves acuáticas cuyos movimientos se conocen con exactitud. En UK e Islandia estudiamos poblaciones de aves con vías migratorias discretas y bien estudiadas, entre los sitios de cría y las áreas de invernada. Consideramos su papel en la colonización y expansión de plantas nativas y exóticas en las latitudes norteñas en respuesta al cambio climático. En California colaboramos con la USGS para analizar una gran cantidad de datos sobre movimientos y dieta de aves acuáticas, que permiten una modelización espacial única de la dispersión de semillas. En el Norte de Europa estudiamos la importancia de las aves piscívoras en la co-dispersión, centrándonos en el cormorán grande. Estudiamos el efecto de la especie de pez en la dispersión de propágulos y el papel de los ciprínidos exóticos en la dispersión de semillas. En Andalucía nos centramos en la co-dispersión de la gaviota sombría, que se mueve entre arrozales, lagunas naturales y humedales costeros. Evaluamos la importancia de la dispersión indirecta por gaviotas alimentándose de cangrejos exóticos que transportan semillas e invertebrados. Investigamos su papel como vectores de la afanomicosis del cangrejo, con gran impacto en cangrejos nativos. En las salinas mediterráneas, nos basamos en nuestros trabajos previos sobre el papel de las aves acuáticas como vectores de Artemia y sus parásitos, estudiando la genética de poblaciones del cestodo Flamingolepis liguloides que usa Artemia como huésped intermediario y al flamenco como huésped definitivo. Estudiamos cómo la genética de poblaciones de los cestodos refleja la conectividad vía los movimientos de los flamencos, las diferencias genéticas entre las poblaciones de sus huéspedes intermediarios nativos A. salina y A. parthenogenetica, o la adaptación al nuevo huésped invasor A. franciscana. Estos 5 componentes de estudio se complementan entre sí y proporcionarán un avance fundamental en la comprensión de la co-dispersión por las aves acuáticas.
Migratory waterbirds act as dispersal vectors for a broad variety of organisms that have no or limited means of active dispersal. Codispersal of other organisms by waterbirds is a major process influencing the biogeography, population genetics and metacommunities of a broad range of plants, invertebrates and microbes. Owing to definition of plant dispersal syndromes based on propagule morphology, there has been a widespread assumption that birds are only important vectors of plants with fleshy fruits. However, recent studies show that waterbirds disperse a much broader range of plants, including terrestrial plants across the range of seed morphologies. Further research to clarify the limits to, and importance, of their role is urgent, because existing models suggest that only migratory birds can allow plants to migrate fast enough to keep pace with climate change. Furthermore, we need to understand which alien plants are spreading via waterbirds so we can manage plant invasions and predict future spread. Waterbirds have long been recognised as likely vectors for native and alien invertebrates but, apart from our previous projects on Artemia, there has been little empirical research. Darwin showed experimentally that fish-eating birds can disperse propagules previously ingested by fish, but so far only anecdotal observations have been made of such dispersal in the field. This project furthers understanding of co-dispersal processes using model vector systems in different biomes affected by global change. We build on previous studies and preliminary data, and focus on waterbirds whose movements are well understood. In the UK and Iceland we focus on waterbird populations that have discrete and well-studied flyways between northern breeding sites and southern wintering sites. We consider their role in enabling colonization and range expansion by native and alien plants in northern latitudes in response to climate change. In California we collaborate with the USGS to analyse their wealth of data generated on movements and diet of migratory waterfowl, to permit unique spatial modelling of seed dispersal. In northern Europe we study the importance of fish-eating birds in co-dispersal, focussing on the great cormorant. We study how the propagules dispersed depend on the fish species, and if seed dispersal is promoted by alien cyprinids. In Andalusia we focus on co-dispersal by the wintering lesser blackbacked gulls that move between ricefields, natural lakes and coastal wetlands. We assess the importance of indirect dispersal by gulls feeding on alien crayfish that carry seeds and invertebrates. We investigate whether gulls act as vectors for the crayfish plague fungus, which has a major impact on native crayfish. In Mediterranean salt ponds, we build on our previous work on the role of waterbirds as vectors of Artemia and of their mutual parasites, by studying the population genetics of the cestode Flamingolepis liguloides that uses Artemia as intermediate host and flamingos as final host. We consider how cestode population genetics reflects connectivity via flamingo
movements, genetic differences between populations of their native intermediate hosts A. salina and A. parthenogenetica, or adaptation to the novel alien host A. franciscana. These five study components complement each other, using both field and experimental approaches, and will lead to a major advance in our understanding of co-dispersal by waterbirds.
Migratory waterbirds act as dispersal vectors for a broad variety of organisms that have no or limited means of active dispersal. Codispersal of other organisms by waterbirds is a major process influencing the biogeography, population genetics and metacommunities of a broad range of plants, invertebrates and microbes. Owing to definition of plant dispersal syndromes based on propagule morphology, there has been a widespread assumption that birds are only important vectors of plants with fleshy fruits. However, recent studies show that waterbirds disperse a much broader range of plants, including terrestrial plants across the range of seed morphologies. Further research to clarify the limits to, and importance, of their role is urgent, because existing models suggest that only migratory birds can allow plants to migrate fast enough to keep pace with climate change. Furthermore, we need to understand which alien plants are spreading via waterbirds so we can manage plant invasions and predict future spread. Waterbirds have long been recognised as likely vectors for native and alien invertebrates but, apart from our previous projects on Artemia, there has been little empirical research. Darwin showed experimentally that fish-eating birds can disperse propagules previously ingested by fish, but so far only anecdotal observations have been made of such dispersal in the field. This project furthers understanding of co-dispersal processes using model vector systems in different biomes affected by global change. We build on previous studies and preliminary data, and focus on waterbirds whose movements are well understood. In the UK and Iceland we focus on waterbird populations that have discrete and well-studied flyways between northern breeding sites and southern wintering sites. We consider their role in enabling colonization and range expansion by native and alien plants in northern latitudes in response to climate change. In California we collaborate with the USGS to analyse their wealth of data generated on movements and diet of migratory waterfowl, to permit unique spatial modelling of seed dispersal. In northern Europe we study the importance of fish-eating birds in co-dispersal, focussing on the great cormorant. We study how the propagules dispersed depend on the fish species, and if seed dispersal is promoted by alien cyprinids. In Andalusia we focus on co-dispersal by the wintering lesser blackbacked gulls that move between ricefields, natural lakes and coastal wetlands. We assess the importance of indirect dispersal by gulls feeding on alien crayfish that carry seeds and invertebrates. We investigate whether gulls act as vectors for the crayfish plague fungus, which has a major impact on native crayfish. In Mediterranean salt ponds, we build on our previous work on the role of waterbirds as vectors of Artemia and of their mutual parasites, by studying the population genetics of the cestode Flamingolepis liguloides that uses Artemia as intermediate host and flamingos as final host. We consider how cestode population genetics reflects connectivity via flamingo
movements, genetic differences between populations of their native intermediate hosts A. salina and A. parthenogenetica, or adaptation to the novel alien host A. franciscana. These five study components complement each other, using both field and experimental approaches, and will lead to a major advance in our understanding of co-dispersal by waterbirds.