Integrating ecology with virus and vector genomics to improve prediction, surveillance and control of West Nile virus outbreaks in Spain
Integrando la ecología con la genómica de virus y vectores para mejorar la predicción, vigilancia y control de los brotes de virus West Nile en España.
Principal investigator
María José Ruíz López
Financial institution
MIN CIENCIA E INNOVACION
Fecha de inicio
Fecha de fin
Code
PID2020-118921RJ-I00
Department
Conservation Biology and Global Change
Brief description
Las enfermedades infecciosas emergentes suponen uno de los mayores retos de salud global. El virus West Nile, es uno de los virus emergentes que más preocupa, por sus repercusiones en la salud humana, de animales domésticos y fauna silvestre. El virus West Nile es un virus transmitido entre las aves por los mosquitos aunque puede infectar tanto a humanos como a caballos, produciéndoles una enfermedad grave. En España la existencia del virus se conoce desde hace varias décadas, desde 2010 se habían producido brotes en caballos, pero los brotes en humanos habían sido anecdóticos con solo 6 casos hasta 2019. Sin embargo, en 2020 en España se ha producido el mayor brote hasta la fecha en humanos, con 77 casos graves diagnosticados y 8 fallecidos. Este brote epidémico hace que sea una prioridad entender qué factores han influido en los cambios en la dinámica de transmisión del virus. La combinación de aproximaciones genómicas y ecológicas pueden ayudar a entender qué factores contribuyen a estos cambios de dinámica a través del conocimiento de las estructuras poblacionales e historia evolutiva de los virus, vectores y hospedadores. Tomando como base estudios ecológicos anteriores e información recogida durante el brote epidémico del año 2020 el objetivo general de este proyecto es mejorar la predicción, vigilancia y el control del virus del West Nile en España analizando la dinámica de transmisión del virus en Europa. Para lograr este objetivo propongo cuatro objetivos específicos. El primer objetivo es evaluar la eficacia de procedimientos de vigilancia vírica en mosquitos que se puedan sistematizar fácilmente. Analizaré si se pueden usar como sistema de vigilancia epidemiológica trampas para mosquitos con tarjetas para conservar material genético impregnadas en azucares. Estas tarjetas son más fáciles de manejar y conservar que pooles de mosquitos, y podría ser una alternativa a los métodos de vigilancia actuales. El segundo objetivo es analizar la estructura genética de los dos principales vectores de WNV, Culex pipiens y Culex perexiguus. Además analizaremos si la estructura genética observada se debe a factores ambientales, geográficos o climáticos utilizando modelos de genética del paisaje. El tercer objetivo es analizar la dinámica evolutiva y epidemilogía molecular del virus West Nile en Europa y España y entender como distintas variables ambientales se asocian con la dinámica vírica observada. Para ello analizaré todos los genomas completos disponibles en GenBank del virus en Europa, incluyendo los genomas del brote de 2020 en España, usando herramientas filogeográficas y de epidemiología filodinámica. El cuarto objetivo es comparar la historia evolutiva y epidemiología del virus con las distancias de dispersión de aves y mosquitos para entender como se propaga. Este proyecto supone un paso determinante en el estudio del virus del West Nile al ser el primero que integra las perspectivas ecológicas y genómicas en su estudio. Por tanto tendrá un gran impacto tanto a nivel científico como social al aportar información fundamental para mejorar la predicción, vigilancia y control de los brotes de West Nile.
Emerging infectious diseases are one of the most important global health challenges. The West Nile virus (WNV) is one of the most important because of its impact on human, and animal health. WNV is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. In Spain the virus has been known for decades. Although since 2010 there have been regular outbreaks in horses, there had been only 6 cases in humans until 2019. However, in 2020, Spain has experienced the major outbreak so far, with 77 detected cases and 8 deaths. This outbreak makes urgent to understand what factors have contributed to a change in the dynamics and spread of the virus. The combination of ecological and genomic approaches can help to understand what factors have contributed to these changes, through the study of the population structure and history of virus, vectors and hosts. Following previous ecological studies and using samples collected during the 2020 outbreak the overarching goal of this project is to improve the prediction, surveillance and control of the virus in Spain. To achieve this goal, I propose four specific objectives: The first is to evaluate the efficiency of a new mosquito surveillance method that can be easily used. We will analyse if using mosquito traps with paper cards impregnated in sugar can be use to identify viral circulation. These cards are easier to handle and process than traditional mosquito surveillance sampling protocols. The second objectie is to analyse the genetic structure of the two main WNV vectors in Spain, Culex pipiens y Culex perexiguus. We will also test if the genetic population structure is associated with enviromental, geographic and microclimatic factors using landscape genetics. The third objective is to analyse the evolutionary history and molecular epidemiology of West Nile virus in Europe and Spain and test which environmental variables are associated with it. We will analyse complete viral genomes from Europe and those from the 2020 Spanish outbreak using phylogeographic and phylodynamics approaches. The fourth objective is to compare the evolutionary history and molecular epidemiology of the virus with dispersion distance in birds and mosquitoes to understand how they influence viral spread. This project represents the first attempt to integrate ecology and genomics to understand the evolutionary history and epidemiology of West Nile virus in Europe, and will undoubtedly contribute to the field of epidemiology and ecology of infectious diseases, demonstrating the utility of using a multidisciplinary approach to study West Nile virus outbreaks.
Emerging infectious diseases are one of the most important global health challenges. The West Nile virus (WNV) is one of the most important because of its impact on human, and animal health. WNV is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. In Spain the virus has been known for decades. Although since 2010 there have been regular outbreaks in horses, there had been only 6 cases in humans until 2019. However, in 2020, Spain has experienced the major outbreak so far, with 77 detected cases and 8 deaths. This outbreak makes urgent to understand what factors have contributed to a change in the dynamics and spread of the virus. The combination of ecological and genomic approaches can help to understand what factors have contributed to these changes, through the study of the population structure and history of virus, vectors and hosts. Following previous ecological studies and using samples collected during the 2020 outbreak the overarching goal of this project is to improve the prediction, surveillance and control of the virus in Spain. To achieve this goal, I propose four specific objectives: The first is to evaluate the efficiency of a new mosquito surveillance method that can be easily used. We will analyse if using mosquito traps with paper cards impregnated in sugar can be use to identify viral circulation. These cards are easier to handle and process than traditional mosquito surveillance sampling protocols. The second objectie is to analyse the genetic structure of the two main WNV vectors in Spain, Culex pipiens y Culex perexiguus. We will also test if the genetic population structure is associated with enviromental, geographic and microclimatic factors using landscape genetics. The third objective is to analyse the evolutionary history and molecular epidemiology of West Nile virus in Europe and Spain and test which environmental variables are associated with it. We will analyse complete viral genomes from Europe and those from the 2020 Spanish outbreak using phylogeographic and phylodynamics approaches. The fourth objective is to compare the evolutionary history and molecular epidemiology of the virus with dispersion distance in birds and mosquitoes to understand how they influence viral spread. This project represents the first attempt to integrate ecology and genomics to understand the evolutionary history and epidemiology of West Nile virus in Europe, and will undoubtedly contribute to the field of epidemiology and ecology of infectious diseases, demonstrating the utility of using a multidisciplinary approach to study West Nile virus outbreaks.