Outstanding Outstanding

Back

Why do kestrels soar?

Why do kestrels soar?

Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season. informacion[at]ebd.csic.es Hernández-Pliego et al (2015) Why Do Kestrels Soar? PLoS ONE DOI: 10.1371/journal.pone.0145402

 


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145402

News News

Las altas temperaturas están provocando que las lagunas y las marismas de Doñana pierdan agua rápidamente

La superficie inundada en la marisma es de un 78% pero la profundidad es escasa. Por otra parte, sólo el 1,9% de las lagunas temporales están inundadas. Las precipitaciones crean una oportunidad para la cría de aves acuáticas, pero su éxito dependerá de la duración del agua disponible

Traffic noise causes lifelong harm to baby birds

A study with CSIC participation reveals for the first time that car noise harms individuals throughout their lifetime even years after exposure

Illegal wildlife trade, a serious problem for biodiversity and human health

A research team led by the Doñana BIological Station and the University Pablo de Olavide have detected wild-caught pets in 95% of the localities in the Neotropic and warns of the risk of zoonotic outbreaks

Urbanization and loss of woody vegetation are changing key traits of arthropod communities

Urbanization is favouring smaller beetle species and larger spider species with greater dispersal capacity.

The loss of woody areas is linked to a decline in the duration of the activity period, a higher tolerance to drought, and less dispersal capacity in both groups.

Blood lead levels in an endangered vulture species decreased following restrictions on hunting practices

Canarian Egyptian vulture was on the verge of extinction at the end of the 20th century. At that time, studies revealed that lead poisoning was a serious problem for the population’s survival. The work has been possible thanks to the monitoring carried out since 1998 by the Doñana Biological Station in collaboration with the Canarian authorities.